
AD-A154 773 RESOURCE MANAGEMENT FOR THE TAGGED TOKEN DATAFLO 1/2
ARCHITECTURE(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
LAB FOR COMPUTER SCIENCE D E CULLER JAN 85

UNCLRSSIFIED MIT/LCS/TR-332 N88814-75-C-066i F/G 9/2 NL

Eh~llllEEllllI
IEIIIIIIIIIIIE
IIIIIIIIIEEEI
EIIIIIIIIIIIII
EIIEIIIIIIIIIE
EE~lllllEEllEE

'It

ii

I

'L3.

11111 1 .1 W4. JIIil =
- ;. 1j.6

if Jf [2 1.W 4 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS1963-A

. "... ... ,,-- - - - - - -,•

0l

COPUE SCEC EHSLG

lS

OKI:S

N00 75 C16661

ut-' I A,,' a C i ee
SECU.'-ITY CLASSIFICATION OF THIS PAGE (When Date Entered) 6

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I" REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR- 332""'""""
4r TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Resource Management for the Tagged Token Master's thesis .
Dataflow Architecture January 1985

6. PERFORMING ORG. REPORT NUMB3ER

MIT/LCS/TR-322
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

David E. Culler DARPA/DOD
N00014-75-C-0661 0

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK-

AREA & WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 -___

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD January 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 124
14 .MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

ONR/Department of the Navy Unclassified
Information Systems Program na ssifieDArlington VA 22217Isa. DECLASSIFICATION/DOWNGRADING "

Arlington, VA 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

Unlimited

,18 SUPPLEMENTARY NOTES i ''' '

I9 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Dataflow, tagged token dataflow architecture, resource management
token storage, controlled loop unfolding, program
unfolding, bounded resource programs, U-interpreter, termination
detection, tag management, program deadlock

20 ABSTRACT (Continue on reverse side If necessary and identify by block number) - .

The Tagged Token Dataflow Architecture is multiprocessor based on the U-interpreter model of
dataflow computation. It captures the essential execution mechanism of the U-interpreter precisely;
operations are enabled for execution by the availability of operand data. However. computational
resources in the model and the machine are viewed quite differently. This thesis addresses four
major resource management issues essential to bridge the gap between the U-interpreter and the 7
Tagged Taken Datatlow Architecture,

DD IJAN 73 1473 EDITION OF I NOV 6S IS OBSOLETE
S 'N 0?o-L4--01-.660m Unclassified

SECURITY CLASSIFICATION OF THIS PAGE ("oen Date Entered)

• -

SECURITY CLASSIFICATION OF THIS PAGE (IWho Data Entered)

1. Termination detection: The completion of code-block invocations must be detected so
resources can be released and reused. This problem is solved by augmenting graphs
with auxiliary arcs so that the execution of a particular operation signifies completion.

2. Token store overflow: Deadlock due to token store overflow is overcome by determining
the worst-case token storage requirements of code-blocks in advance and reserving that
amount of token storage, Token storage requirements are determined by modeling the
space of legal graph configurations as a system of integer linear constraints and
maximizing the token storage requirement subject to these constraints. The resulting -
integer linear program is of a form that can be solved efficiently.

3. Iteration identifier overflow: The labels carried on tokens are represented by fixed size " . -

tags: iteration identifiers must be reused to allow loops to execute a large namber of .'
iterations. This requires controlling the unfolding (i.e,. the number of concurrent •
iterations) of loops. It is shown that loops exhibit bounded unfolding if and only if the
graph forms a single strongly connected component. A transformation is proposed
which allows controlled unfolding of loops and automatic reuse of iteration identifiers.

4. Program deadlock: Each code-block invocation requires certain resources. Thus, the
, - resource capacity of the machine limits the number of concurrent invocations. Programs 6

unfold as a tree of invocations. If too much parallelism is exposed (i.e.. if the invocation
tree is allowed to grow too broad) the machine resources will become prematurely
exhausted and cause the program to deadlock. A resource management strategy is
developed which constrains program unfolding so that just enough parallelism is -.--

exposed to fully utilize the machine.

AcceF-sizon For 4

NTIS GRA&I
DTIC TAB
Unarlo0nced
Justificatio

By 0
Distributionl/
Availability Cod esv -.g:': '

Dis 'Avail and/or|i special -.'"

..-..-- , .
Unclassified ":-":'

." SECURITY CLASSIFICATION OF THIS PAGE(IIhwn Dole Efntered)

* Q

Resource Management
for the

Tagged Token Dataflow Architecture

by

David E. Culler

January, 1980

t 0! .. .

© David E. Culler 1985

The author hereby grants to M.I.T. permission to reproduce and distribute copies of this thesis
document in whole or in part.

V

This research was supported in part by the Advanced Research Projects Agency under contract -

N00014-75-0661 and in part by various grants from the International Business Machines
Corporation.

MASSACHUSETS INSTITUTE of TECHNOLOGY
Laboratory for Computer Science

Cambridge Massachusetts 02139

L. . .

i ~~~~~....... o .
°

..- -..... •...... .. °....

- - -- .. °- -

* S
RESOURCE MANAGEMENT

FOR THE
TAGGED TOKEN DATAFLOW ARCHITECTURE

by
David E. Culler

Submitted to the Department of Electrical Engineering and Computer Science , ... -.

on January 18, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science - -

Abstract
The Tagged Token Dataflow Architecture is multiprocessor based on the U-interpreter model of
dataflow computation. It captures the essential executior nechanism of the U-interpreter precisely;
operations are enabled for execution by the availability of operand data. However, computational
resources in the model and the machine are viewed quite differently. This thesis addresses four
major resource management issues essential to bridge the gap between the U-interpreter and the
Tagged Token Dataflow Architecture:

1. Termination detection, The completion of code-block invocations must be detected so
resources can be r sed and reused. This problem is solved by augmenting graphs
wit xi ary arcs so that the execution of a particular operation signifies completion.

2. Token store overflow- Deadlock due to token store overflow is overcome by determining 0
the worst-case t rstorage requirements of code-blocks in advance and reserving that
amount of token storage. Token storage requirements are determined by modeling the
space of legal graph configurations as a system of integer linear constraints and
maximizing the token storage requirement subject to these constraints. The resulting
integer linear program is of a form that can be solved efficiently. ,

3. Iteration identifier overflow The labels carried on tokens are represented by fixed size
tags; iteration identifiers mdst be reused to allow loops to execute a large number of
iterations. This requires controlling the unfolding (i.e., the number of concurrent
iterations) of loqs, 1f is shown that loops exhibit bounded unfolding if and only if the
grapflTorms a single strongly connected component. A transformation is proposed ,
which allows controlled unfolding of loops and automatic reuse of iteration identifiers.

4. Program deadlock, Each code-block invocation requires certain resources. Thus, the .
resource capacity of the machine limits the number of concurrent invocations. Programs
unfold as a tree of invocations. If too much parallelism is exposed (i.e., if the invocation
tree is allowed to grow too broad) the machine resources will become prematurely .
exhausted and cause the program to deadlock. A resource management strategy is
developed which constrains program unfolding so that just enough parallelism is
exposed to fully utilize the machine.

Thesis Supervisor: Dr. Arvind .

Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: Dataflow, U-interpreter, Tagged Token Dataflow Architecture, Resource Management,

Termination Detection, Token Storage, Tag Management, Controlled Loop Unfolding, Program

Unfolding, Program Deadlock, Bounded Resource Programs. -0

... :.i .. :' : .

Acknowledgments _____"-

There are many people I want to thank. People without whom this work would not have been

possible. Sara, my wife, I thank you with all my heart. You have sacrificed so much to allow me to

pursue graduate studies and offered your love, patience, and support. I can hardly express how

much it all means to me. My family, as always, offered unending support and confidence. Arvind, S 0

my advisor, offered a quiet mixture of freedom, guidance, and support. Steve Heller was an

absolute mench, reading many drafts and giving me a hard time in the most considerate ways. Greg

Papadapoulos was invaluable in the initial formulation of many of the ideas and read the early *

drafts. Bhaskar GuhaRoy shared his own gift for enthusiasm. Deborah Estrin listened patiently to

the trials and tribulations while we jogged along the Charles. Professor Leiserson started me

thinking about constraint systems. Finally, all the other members of the dataflow community here

at M.I.T have provided a cheerful and stimulating research environment. I want to thank you all. *

This research was supported in part by the Advanced Research Projects Agency under contract

N00014-75-0661 and in part by various grants from the International Business Machines - .

Corporation. I .

A fine sunrise or an elegant sunset
achieves moving colors and masses of changing light p
in a properly organized confusion.

Carl Sandburg

D S

p 0

Dedicated to Sara

with all my love,

D.

* 0

Table of Contents 9"

1. Introduction 1
1.1. Overview of the Thesis 2

2. The U-interpreter 9 ,.- - -
2.1. Activity names 12
2.2. Basic Firing Rule 13 0

2.3. Well-behaved Graphs 14
2.4. Conditional Schema 15
2.5. Acyclic Code-blocks 17
2.6. Loop Code-blocks 20
2.7. Dynamic Structure of Dataflow Programs 22 0 0

2.8. Summary of the U-interpreter Model 26
3. The Tagged-Token Dataflow Architecture 29

3.1. Basic Organization and Operation 30
3.2. Operating Assumptions 32
3.3. Code-block Invocation 35 0

3.4. Tags 39
3.5. Summary 41

4. Resource Management Problems 43
4.1. Termination Detection 44
4.2. Token Storage Overflow 45 . S

4.3. Tag Management 47
4.4. Program Deadlock 49 . -.

4.5. Summary 53
5. Analysis of Acyclic Blocks 55

5.1. Termination Detection 56 *
5.2. Constraint Systems to Model Program Configurations 57
5.3. Token Storage Requirements of Acyclic Code-blocks 58
5.4. Extensions for Multiple Token Stores 62
5.5. Token Storage on Individual PEs 63
5.6. Resource Requirements of Entire Acyclic Programs 63
5.7. Summary 65 .

6. Analysis of Conditional Blocks 67
6.1. Termination Detection 67
6.2. Naive Approaches to Token Storage Analysis 68
6.3. Constraint Model for Conditionals 70
6.4. NP-Completeness of Tight Storage Bounds 71
6.5. Approximate Bounds 73 . •
6.6. Summary 74 -

7. Analysis and Control of Loops 77
7.1. Termination Detection 78 .

7.2. Constraint Model of Loop Configurations 78
7.3. Bounded and Unbounded Loops 82

9• 9

, . . - -...]

7.4. Controlling Loop Unfolding 89 .

7.5. Storage Requirements of Parameterized Loops 94

7.6. Extensions for Fairness Assumptions 98 --

7.7. Extensions for Nested Loops 99
7.8. Loops with Conditionals 99
7.9. Summary 101

8. Dynamic Control 103
8.1. Breadth-first and Depth-first Evaluation 104

8.2. A Control Strategy 107
8.3. A Resource Management Policy 109

9. Conclusion 111
References 115

0. - -

0

.'S ili

? ."0

" """0 '

S'° '

§1.0 Introduction 1

Chapter One

Introduction

The Tagged Token Dataflow Architecture is a novel multiprocessor architecture based on the

U-interpreter [9] model of dataflow computation. The machine is extremely close to the model in

certain aspects, but fundamentally different in others. In both the model and the machine,

operations are enabled for execution based on the availability of data. However, the model assumes

unbounded resources and unbounded processing power, whereas the machine must operate within

finite resource constraints. This difference raises a variety of resource management problems which

must be overcome for large programs to execute effectively on the Tagged Token Dataflow

Architecture

The execution mechanism embodied in the U-interpreter and realized in the Tagged Token

Dataflow Architecture is quite unlike that of conventional computers. Under the U-interpreter, a .. -

program is a dataflow graph; the nodes denote operations, and the arcs denote data dependence

between operations. Data values are carried on labeled tokens, which flow along the arcs in the

graph. An operation may execute (or fire) whenever a set of tokens is available on its input arcs.

When an operation fires it consumes a token from each input arc and produces a result token on

each output arc. The Tagged Token Dataflow Architecture captures these aspects of the model

precisely. A program for this machine is an adjacency list representation of a dataflow graph; each

instruction contains an operation code and a list of successor instruction addresses. Data is

transferred between instructions as labeled packets of information, Le., tokens. Instructions are *p S
scheduled based soley on the availability of operands: an associative token store detects when a

matched set of operands is available and enables the corresponding instruction for execution. -

When an instruction executes, its operands are purged from the token store, a result is computed,

and result tokens are generated with labels corresponding to the output arcs of the instruction. *

- . S ° '°o

2 Introduction § 1.0

The fundamental difference between the model and the machine is the viewpoint adopted toward

computational resources. The model is essentially free of resource constraints. All resources are

unbounded, allocated implicitly, and used only once. No bounds are placed on the number of

tokens which may reside on a arc, the number of simultaneously executing operations, or the size of

the labels carried on tokens. A program is allowed to unfold in an unconstrained manner, exposing 0

as much parallel activity as possible [7]. In the Tagged Token Dataflow Architecture, resources are

in finite supply, allocated explicitly, and reused by necessity. A given machine configuration offers

a fixed amount of token storage and a fixed number of processors. The labels carried on tokens are

represented by fixed size tags. The viewpoint adopted in the U-interpreter model is simple and

elegant, but impractical for a realistic machine.

This thesis offers a way to overcome the differences between the model and the machine through

a concerted approach to resource management, involving the compiler and the run-time system.

Program graphs based on the U-interpreter model are transformed into equivalent graphs which are

more suitable for execution on the Tagged Token Dataflow Architecture. These graphs have

predictable resource requirements and include special operations to engage the run-time system. •

The run-time system has two responsibilities: dynamic allocation/deallocation of resources, and

dynamic control of program execution. The work presented here is motivated by the need to

resolve particular resource management problems facing the Tagged Token Dataflow Architecture,

however, it serves a more general goal as well. Resource management is a fundamental aspect of

any dataflow machine, and the issues raised in this thesis should have a prominent role in the design

and evaluation of dataflow architectures in general. 6

1.1. Overview of the Thesis

The U-interpreter

The U-interpreter is presented in Chapter 2. Under this model, tokens carry activity names, in

addition to data values, which specify the part of the computation to which the token belongs. An

operation may execute whenever a set of tokens with identical activity names is available on its

input arcs. Parallelism and synchronization are expressed naturally through the branching and

rejoining of the graph. A program graph establishes a partial order on the firing of operations; if

0

§ 1.1 Introduction 3

there is no dependency between two operations, they are permitted to fire in parallel or in any

order. The basic operations are described by simple rules for producing result values and activity

names from input values and activity names. The operations have no side-effects and no internal

state. Thus, if there is no dependency between two operations, the results produced are not affected

by the relative order in which the operations fire. The class of legal program graphs is defined by a 0

set of graph schemata and simple composition rules. These graphs are structured such that all legal

execution orderings produce exactly the same results. The model allows unbounded queuing of

tokens on the arcs, unbounded activity names, and unbounded parallel activity. 0

In examining the U-interpreter, there are a number of important points to observe. (1) A

program unfolds as a tree of code-block invocations, much as a conventional program does, except

that many branches of the tree may be in execution simultaneously. At any point in a computation,

the active portion of the invocation tree represents the state of the computation. (2) Activity names

grow rapidly in size. The context portion of the activity name specifies a path from the root of the

tree to a particular code-block invocation, and thus grows in size linearly with the depth of the

invocation tree. The iteration number portion of the activity name grows logarithmically with the

number of iterations executed by a loop. (3) The token storage requirement of a program is the

maximum number of tokens that co-exist at any point in a legal execution ordering. This is an

important measure of the resource requirements of a program. In general, it is not possible to

determine the token storage requirement of an entire program in advance, as this is equivalent to

the classical halting problem. However, it is possible to determine the token storage requirements

for reasonably large portions of programs; this is non-trivial as there are generally many legal - -

execution orders. (4) The resource requirements of a program are extremely sensitive to the 0

execution order. The active portion of the invocation tree determines the amount of resources

required by the program. Under sequential evaluation, at most one branch is active at any time.

Under parallel evaluation the active portion may include the entire tree. It is trivial to construct

examples where a maximally parallel evaluation has exponentially larger resource requirements

than a sequential evaluation. The resource requirements of a program can be controlled by

constraining the amount of exposed parallel activity.

S..:

S . .",'

§ 2,5 The U-interpreter 17

2.5. Acyclic Code-blocks

Acyclic graphs can be encapsulated as a code-block to support user-defined functions. This makes

the model fully general, since all partial recursive functions can be expressed in terms of function

invocation and conditional expression. Function invocation changes the nature of the model

dramatically. For acyclic graphs without function invocation, the computation is completely

described by the program graph. Each operation fires exactly once. With function invocation, the

program effectively expands whenever a function is invoked. An executing dataflow program is an

extremely dynamic entity.

An acyclic code-block is simply an acyclic graph with a begin operator as the input node and an

End operator as the output node (cf Figure 2-4). This corresponds to a user-defined function

containing no loops. The begin and end operators manipulate the context portion of the activity

name in conjunction with the apply schema, as shown in Figure 2-4. The apply operator takes as

input an argument structure and a code-block identifier. It produces a result token which is

destined for the begin operator of the specified code-block and carries the argument structure as

data. The activity name of the corresponding apply' operator is stacked into the context U' =

(U.C.SrPLY- .l) to provide a unique context for the new invocation. The context serves also to

provide a return activity name when the invocation completes. The iteration number is immaterial,

and is set to zero. The begin operator simply passes the argument structure on to the body of the

invoked code-block. Since data structures can be passed on tokens, a single argument token and a

single result token is fully general.

If the body of the invoked code-block is well-behaved, the end operator receives a single token

with context u' and iteration number 0. It unstacks the activity name for the apply" operator, and

thereby returns the result value to the apply schema. The apply" operator simply passes the result

value to its successors.

The behavior of the apply and endare given by, .

{(U.C.S PI , v>arg, <U.C.S PLY.I, P> poc}I- {<<U.C.S AiPLY' I>.P.S aWN.0, v>}, and

{<<U.c.sAPPLYID.>P.SEND.0, v>} {<U.C.SPLY 1L, v}.

The begin and apply- are simply identity operators.

...................... , -

16 The U-interpreter § 2.4

F(x, .Xk) else G(xI ,.. Xk), where F represents the 'true' block and G the 'false' block. The

k switch nodes are controlled by a single predicate. The two sub-blocks of the conditional schema

may be any well-behaved graphs. The merge, denoted by ® is not a true operator; it denotes that

two arcs converge on the same port. Since the arms of the conditional are well-behaved, a single

wave of input tokens produces a single wave of tokens on either the 'true' or 'false' side, with the

original U. C and I. Thus, each merge receives exactly one token, and it carries the original u, c and

i. So, the conditional schema is well-behaved.I0

switch switch switch Pre
T F T F T F

'true' block 'false' block]ii,'2

0

Figure 2-3: Schema for Conditional Expressions

• • -

o,

§2.3 The U-interpreter 15

An operator is well-behaved if each firing consumes a token from each input arc and produces a

single token on each output arc, carrying the U, C and i common to the input tokens. Arithmetic,

logical, and data structure operators are well-behaved.

Acyclic graphs of well-behaved operators are essentially like well-behaved operators; a single set

of inputs produce a single set of outputs, with the same u, c and I. Consider, for example, the graph

in Figure 2-1, above. We observed that this graph has three legal execution orders. S1 must fire

first. Then S2 and S3 may fire in parallel, S2 may fire before S3, or S3 may fire before S2. Finally,

S4 fires. With all three orders, a single wave of tokens propagates through the graph, although the S

respective wavefronts differ. Each activity is assigned a unique activity name, independent of the

execution order, because only the S part changes, and no statement number is repeated. Eventually,

a single wave of tokens is produced on the output arcs, with the u, C and I of the input wave. This

property is formalized below.

Definition 2: A graph is well-behaved if a set of tokens, one on each input arc, with
identical U. C and I: (1) produces a token on each output arc carrying the same U, c and I,
(2) leaves no other tokens in the graph, and (3) assigns to each activity generated by the
set of inputs a unique activity name, independent of the execution order.

Acyclic interconnections of well-behaved operators are well-behaved, since the u, c and I parts of

the activity name do not change and each operation fires exactly once. By induction on the depth of

the graph, the results produced by an acyclic graph are determined entirely by the values carried on

the input tokens, independent of the execution order.

2.4. Conditional Schema

The graph schema for conditional expressions is depicted in Figure 2-3. It employs a special

operator, switch, which is not well-behaved. A switch receives two inputs, an arbitrary data value

and a boolean control value, and routes the data value to one or the other output, as specified by the

control value. The behavior of the switch is given by:

{<U.C.SsvnTC.I, 0 data, <U.C.S SWICi, b)l} I- {<U,CSTRtEv, 0>P>u, ifb = true,

{<UCSFAtSEI, v pfase}, ifb =false.

The conditional schema represents an expression of the form, if P(a1, .. am) then

9...

14 The U-interpreter § 2.2

Definition 1: A configuration ofa dataflow graph P is a set of tokens with activity
names specifying arcs in P.

For configurations C1 and C2, we say C1 -- C2, if C is generated from C1 by the firing of
one or more activities enabled in C.

A legal execution order of a dataflow program P is a sequence of configurations (Cl ,
C2 ... ek) such that C1 is an initial configuration and Ci -- Ci+l, for each i from 1 to k-1.

A legal configuration is a configuration that appears in some legal execution order.

Note the U-interpreter is a non-deterministic model of computation (1- is a relation of the form

token set X program graph X token set), since many activities may be enabled in a given

configuration. This is not surprising, as parallel computation is a mild form of non-determinism. . -

We will we require that dataflow graphs be structured such that the results of a computation are

determinate, even though the execution order is not.

2.3. Well-behaved Graphs

For arithmetic and logical operations the context, code-block name, and iteration number on the .

result tokens are identical to those of the input activity name. The result tokens are destined for

operations within the same iteration of the same invocation of the same code-block as the input

tokens. The S part and the port differ for each result token; they specify the arcs that the token is to

traverse. The behavior of these operations is given by:

.C.S., v? :=.. p } U.C.T.I, O (V...,V 1)>) o j , d},

where OP. is the operation specified by node s,

p is the arity of OP,, and

T.....Td are the addresses of the successor nodes.

Data structure operations (Append and Select), follow this basic rule as well. Data structures are

considered values and are (conceptually) carried on tokens. Append takes three inputs, a structure,

and index, and a value, and produces a new structure which differs from the input structure only at

the specified index, where the input value is appended. The old structure is not modified. Select

takes as input a data structure and an index and produces the value associated with the specified 0

index.

.. .:... ii i..i.. -.. • i. _ " -.. -"

§2.2 The U-interpreter 13

2.2. Basic Firing Rule

The basic firing rule is illustrated in Figure 2-2. Tokens carry a value. an activity name, and a

port number. All tokens destined for instruction s in code-block P carry an activity name of the -

form (u.P.SJ). The different instances of this operation are differentiated by the u and i parts. All

tokens participating in an activity must carry identical activity names. Thus, in Figure 2-2, the S

tokens carrying values of 1 and 2 enable operation S, but those carrying 1 and 5 do not. The port

number specifies the input arc upon which the token resides. An activity is enabled for execution

when tokens with identical activity names are available on each port of the node specified by the

activity name. These matching tokens are consumed and result tokens are produced for the output

arcs. Figure 2-2 shows the transition caused by a single firing of the + operation.

U.CS.1

,0

U.C.TI.I U.C.T2.1

ST S:

2 12

Figure 2-2: Firing an Operator

The firing rule specifies the yields-in-one-step relation for the U-interpreter. A configuration is

simply a set of tokens. Since each token identifies the arc upon which it resides, a set of tokens is

effectively an assignment of tokens to arcs in a graph. In a given configuration a collection of

activities are enabled for execution. Some number of them fire, generating a new token set by

removing input tokens and producing output tokens. The initial configuration of a dataflow

program has a single token on the input arc of the top-level code-block.

0-.-.-.

12 The U-interpreter § 2.0

function, with additional "uniqueness" information carried on the tokens to differentiate between

distinct invocations. In essence, the program graph is fixed, but some portions have many

independent waves of tokens flowing through them. The latter approach is employed in the U-

interpreter, with part of the activity name (the context) providing uniqueness.
o

Activity names do not, in and of themselves, guarantee that the selection of tokens to participate

in an activity is completely determined. If two tokens could be placed on an arc with the same

activity name, either could be selected to participate in an activity. Legal dataflow graphs are

structured so this can not happen; no two activities have the same activity name 3. Legal dataflow G

graphs are defined by a collection of graph schemata and rules of composition. The schemata

ensure that all potential activities in the execution of a program are assigned unique activity names.

The graphs are self-cleaning, Le, no tokens remain in the graph when the program terminates, and

all legal executions produce exactly the same results.

2.1. Activity names

The activity name is a 4-tple, <CONTEXT, CODE-BLOCK NAME. STATEMENT NUMBER, ITERATION •

NUMBER>. This is generally abbreviated <u.c.s.D>. The code-block name and statement number

together identify a specific node in the program graph. A dataflow program comprises a collection

of separate graphs called code-blocks, these correspond to individual loops or procedures in a high-

level dataflow language. Each code-block is given a unique name and the operators within a code

block are given unique statement numbers. The context and iteration number together identify a

particular firing of the specified node. The context specifies a particular invocation of the named

code-block. The iteration number specifies a particular iteration, within this invocation. Assume 0

the graph schemata are structured so that each potential activity in a dataflow program has a unique

activity name. Then the unique context for a code-block invocation can be simply the activity name

of the apply activity which generated the invocation.

3There are many situations where non-deterministic behavior is required, eg., real-time systems. This can be captured
in the dataflow model with specific non-deterministic operators, such a merge. Although non-deterministic constructs . -..
have been proposed for the U-interpreter (cf the references [9. 41), these constructs will not be considered in the thesis.

S.:::.:

§ 2.0 The U-interpreter 11

The preceding discussion treats a dataflow program as an acyclic graph, which can be applied to a

set of arguments by placing initial tokens on the input arcs. We want to extend this basic model to

allow for cyclic graphs and user defined functions. With cyclic graphs it is possible for a number of

tokens to reside on an arc simultaneously. The simple firing rule given above does not specify how

tokens from the various arcs should be selected to participate in a given activity. Additional

constraints are required to insure that the selection is completely determined. If there is any

indeterminacy in the selection of tokens to participate in an activity, program results will be

indeterminate as well.

Historically, these additional constraints have been introduced into the dataflow model in three

forms. The static-dataflow model proposed by Dennis [15] places the constraint that no more than

one token can reside on an arc. The Q-interpreter [8] allows unbounded queueing on the arcs, but

requires that FIFO order be maintained; this is difficult to implement in practice. The U-

interpreter allows unbounded queueing on the arcs with no imposed order; instead, each token

carries an activity name which uniquely identifies the portion of the computation to which it

belongs.

In the U-interpreter, the firing rule is extended as follows: an operator may fire whenever a token

is available on each of its input arcs, such that the set of input tokens have identical activity names.

Any sequence of activities which obeys this rule is a legal execution order. Most code-blocks will

have numerous legal execution orders, since the firing rule defines a partial order on the execution

of activities in a program. The exact structure of activity names and the rules for generating the

activity names for result tokens are described below.

User-defined functions introduce additional complications. Intuitively, such a function is

represented by a dataflow graph. Applying the function involves placing tokens on the input arcs of

the corresponding graph and allowing them to propagate through the graph to produce results. The

subtlety lays in how tokens are conveyed to and from the representative graph. One approach [21] 9

suggests an apply operator which receives a function value and an argument value and replaces itself

%ith the graph representing the function. In essence, function application is graph expansion. This

approach encounters serious difficulties if cyclic graphs are permitted. A second approach [15]

suggests that the apply operator forward its argument value to the graph which represents the

9::::::

10 The U-interpreter §2.0

However, before going into detail we will develop intuition for the nature of dataflow computation.

A dataflow program is a directed graph of operations. As an example, Figure 2-1 shows the graph

for (a2 + 1) * (a2 - 1). Values are transferred between operations along the arcs as tokens. An

operator may execute (or fire) whenever tokens are available on each of its input arcs. In Figure

2-1, operation S1 is enabled to execute. Upon firing, it consumes a token from each input arc and S

produces a token on each output arc. Thus, in Figure 2-1, after S1 fires, both S2 and S3 will be

enabled. These two operations may execute in parallel, or either may precede the other. Dataflow

operators are functional in the sense that the outputs of an activity are entirely determined by the .0

values carried on the input tokens. The pair of values received by S4 is not affected by the order in

which S2 and S3 fire. S4 will not be enabled until both S2 and S3 have completed.

S :-

1 3

S4

4

Figure 2-1: A Simple Dataflow Graph -*

p S

-•..,.-. .-,....ii . °- ,{ . . . -*... .*.,...........

§ 2.0 The U-interpreter 9 0

Chapter Two

The U-interpreter

The U-interpreter is an abstract model of parallel computation developed by Arvind, et. at [9, 3].

This chapter describes the model in detail and draws attention to those aspects most germane to

resource management. The U-interpreter is independent of any particular machine. It is defined

abstractly in terms of propagating data values, in the form of tokens, through graphs. Parallelism is

implicit; the model simply relaxes the constraints on the order in which operations are performed. '

Tokens carry an activity name, in addition to a data value, which specifies the arc on which the

token resides and the firing of the corresponding instruction in which it will participate. An

individual firing of an instruction is termed an activity. The basic operations are defined by rules

for generating result values and activity names based on the input values, input activity names, and

the program graph. The structure of dataflow graphs is dictated by a collection of simple graph

schemata 2. The schemata play a prominent role in the latter chapters of the thesis, for they are the

basis for analyzing the structure of program graphs. The schemata are defined such that all legal .

executions produce exactly the same results. Thus, programs are determinate, even though the

order in which activities are performed is not. Synchronization of parallel operations is inherent in

the mechanism for enabling operations, because operations are enabled for execution when their

operands are available. The model is simple and elegant, but unrealistic for a direct

implementation because it assumes unbounded queuing of tokens on the arcs, permits activity

names of unbounded size, and allows an unbounded number of operations to execute

simultaneously. -

This chapter presents a precise, but not completely rigorous, formulation of the U-intepreter.

2The graph schemata presented here differ slightly from those presented in the references. Notably, the L operator is
eliminated from the loop schem.

" " : " ' " " ' . . . " . . . : : :" : . "• . . .- .-. .' -. ..' -:' ::': : .. :- - -. . .. - -. .

. . o * . ° - . . o , ° . . . , . , .. . - . o , • --

8 Introduction § 1.1

Dynamic Control

Chapter 8 addresses how the unfolding of general program structures can be dynamically

controlled. The Tagged Token Dataflow Architecture tends to allow the invocation tree to unfold

in a breadth-first manner. This approach exposes as much parallelism as possible, but causes

extremely large resource requirements. A depth-first unfolding exposes less parallelism, but has 0

smaller resource requirements. By allowing the mode of unfolding to be determined dynamically,

based on the machine status, it is possible to execute large programs effectively on the machine.

The program is allowed to unfold in a breadth-first manner until sufficient parallelism is generated

to fully utilize the machine. At which point, a depth-first unfolding can be pursued on a number of

independent branches.

- 0.-

S---2i

..- ._. .- . -..

§ 1.1 Introduction 7

Acyclic Blocks With Conditionals

Chapter 6 extends the constraint system technique to handle conditional expressions. This pushes

the limits of the approach. Determining tight bounds on the token storage requirements of acyclic

blocks with conditionals is NP-complete. However, approximate bounds can be determined

efficiently and successively refined using a branch-and-bound approach. While, determining the 0

resource requirements of an entire program employing conditional expressions and recursion is

equivalent to solving the halting problem, tight bounds on the resource requirements of individual

code-block invocations for such programs can be computed efficiently, for most code-blocks

encountered in practice.

Cyclic Blocks

Chapter 7 focuses on the class of cyclic graphs arising from the loop constructs. These graphs

present a variety of inter-related problems. (1) The iteration number portion of the tag will

overflow on modest loops. (2) The token storage requirement for loops may be unbounded. (3)

Loops may spawn an unbounded number of concurrent, subordinate code-block invocations. The

key to solving these problems is to control the number of concurrent iterations of a loop. The main .

-. result presented in Chapter 7 characterizes the class of loops which have bounded unfolding and

* those which can potentially unfold into arbitrarily many concurrent iterations. A loop has bounded

unfolding if and only if the graph representing the body of the loop forms a single strongly

connected component. This result suggests a technique for augmenting cyclic graphs so that they

have bounded unfolding. With slight extensions to the basic model, the degree of unfolding can be

set at the time the loop is invoked. These augmented graphs produce the same results as the

original graphs, but have more predictable resource requirements. The token storage requirements -_

*. can be determined using the constraint system technique, as a function of the number of concurrent

iterations. Iterations identifiers are recycled in these augmented graphs automatically; if the loop

has a maximum of k concurrent iterations, then the first iteration is guaranteed to be complete

when the k + 1st iteration begins.

The analysis and transformation of cyclic graphs is addressed first for the case where conditional

* expressions within the loop are excluded. The results are extended to handle conditional

expressions.

• ..
... * * ** '* .*-. . . . -. * .

6 Introduction § 1.1

Dataflow Architecture supports only I-structures, as they are more efficient, but less general. The

work presented in this thesis is pertinent with either form of structures. The discussion assumes the

general form of structures.

Acyclic Blocks Without Conditionals 0

Chapter 5 examines the simplest class of programs, acyclic blocks without conditionals. The

overall structure of these programs is independent of the input data and can be determined in

advance. Recursion is excluded a priori, for without conditionals it would never terminate.

Nonetheless, this class of programs is quite interesting. For a given computation, there are many

(possibly exponentially many) legal execution orders, and the different orders have vastly different

resource requirements. The particular order that a given machine will follow is extremely hard to

predict, instructions are scheduled for execution dynamically based on the arrival of data. The

arrival patterns are effected by the machine configuration, the assignment of work to processors, the

structure and behavior of the network, the collisions encountered in the network, the mix of

instructions, etc. Rather than try to predict the particular execution order, we will determine the

worst-case resource requirements in any legal execution order.

The primary resource management problem is token storage. Unless the load placed on the

waiting-matching stores of the various PEs is accounted for, an individual PE may become over-

committed and deadlock, even though the overall resources in the machine are sufficient to support

the computation. To account for this load, the potential token storage requirement of a code-block

must be determined in advance. A powerful technique for determining the worst-case token

storage requirements for such programs is developed in Chapter 5. The basic idea is to formulate o

the space of legal configurations of a dataflow graph as a system of integer linear constraints. The

token storage requirement of a code-block, as a function of the configuration, can be maximized

over the feasible region determined by the constraints. The constraint systems that arise through

this approach have a particularly simple form (the dual of a min-cost flow problem) and can be

-'.-i solved efficiently (i.Le, in polynomial time). This technique is quite general, and allows for a variety

of extensions.

-S.

- °

§ 1.1 Introduction 5

The Resource Management Problems

Chapter 4 articulates the basic resource management problems in realizing the U-interpreter on

the Tagged Token Datafiow Architecture. These problems can be largely overcome through

sophisticated resource management. (1) Program graphs should be embellished so that a request is

sent to the run-time system whenever resources must be allocated. The final token generated by a

code-block invocation should be a signal to inform the system that the invocation has completed

and the corresponding resources can be released. (2) The run-time system should ensure that no

waiting-matching store is over-committed. This requires determining the worst-case token storage

requirements of code-block invocations in advance, so the system can avoid assigning an invocation

to a collection of processors with insufficient token storage. (3) Loop code-blocks should be

transformed so that iteration numbers can be reused. If iterations numbers are reused properly, the

size of the iteration field in the tag limits the number of concurrent invocations of a loop, not the

-. total number of iterations. (4) The breadth of the active portion of the invocation tree should be

cnnstrained so that enough parallelism is exposed to fully utilize the machine, without requiring

more resources than necessary. Following these guidelines will allow programs of significant size to ,

execute effectively on the Tagged Token Dataflow Architecture. The latter chapters of the thesis

- develop the solutions suggested by this guideline, starting with a simple class of programs and

progressing through more complex program structures.

Data structures present an entirely different class of resource management problems, many of

which are extremely difficult. This thesis does not deal with the management of data structure

storage at all. A caveat ought to be placed around each statement concerning resource

requirements; data structure storage requirements are not included. Many program structures

which have bounded resource requirements excluding data structure storage, may have unbounded

i structure storage requirements. The structure storage requirements of a program depend heavily on

* the model of structures employed, whether it be Dennis's general structures [15, 9] or

I-structures [1111. The U-interpreter is defined in terms of general structures. The Tagged Token

1General structures require a new structure, with a single new element, be created when an element is appended. They
* are usually implemented as a linked structure. so that parts of the structure can be shared. I-structures are a special case of

structures. requiring that each element be written at most once. They are usually implemented as an array of slots, with
special hardware to allow reads to arrive before writes [17).

• .,...

4 Introduction § 1.1

The Tagged Token Dataflow Architecture

The Tagged Token Dataflow Architecture is described in Chapter 3. It is a scalable

multiprocessor comprised of numerous processing elements (PEs), each a complete dataflow

computer. The PE is heavily pipelined and extremely tolerant to communication latency [5]. The

Tagged Token Dataflow Architecture captures the basic execution mechanism of the U-interpreter.

Data is transferred between instructions as tokens, but tokens carry fixed size tags in place of

unbounded activity names. The tag specifies the instruction which is to be executed, including the

processing element that holds the instruction, and the address where the instruction resides within

that processing element, An associative waiting-matching store is employed to retain tokens while

they await their partners and to detect when instructions are enabled. When matching tokens are

detected they are purged from the waiting-matching store, and the corresponding instruction is

scheduled for execution. A computation is distributed over the PEs using a two-level scheme.

Code-block invocations are assigned dynamically to collections of processors, called domains, by the

nm-time system. The individual activities (i.e., instances of instructions) within a code-block

invocation are distributed over PEs in a domain by hashing the tag [21. Certain resources are

associated with each code-block invocation, including: a code-block register, a block of program

memory, and varying amounts of token storage.

In examining the Tagged Token Dataflow Architecture there are a number of important points to

observe. (1) Program graphs must be embellished to engage the resource management system when

resources are to be allocated and to inform this system when resources can be released. (2) If the

waiting-matching store of an individual processor becomes full, the processor will deadlock. Thus,

the load on the waiting matching store should be considered along with other resources when

assigning work to processors, even though token storage is allocated and released implicitly. (3) The

iteration number portion of the tag will overflow. Thus, iteration numbers must be reused like

other resources. (4) If programs are allowed to unfold in an unconstrained manner, as in the U-

interpreter, many programs which should execute within the resources provided by the machine

will exhaust the machine resources and fail because too much parallelism is exposed. By

constraining how programs unfold, it is possible to reduce their resource requirements, while still

fully utilizing the machine.

S. . . .

a, al~ L.. m-. ,. .ll..,.... ml..... . ,

18 The U-interpreter § 2.5

IP
a

begin begin

applyapp

Body Body
of of

aPP&I apply'

i::-I _ _ I

Figure 2-4: Code-block Invocation

Assuming the invoked code-block is well-behaved, the apply schema is well-behaved. So any

acyclic interconnection of basic operators, conditional schemas, and apply schemas is well-behaved,

assuming the invoked code-blocks are well-behaved.

The manipulation of activity names is best understood by considering the entire invocation tree

generated by a computation. Note that if a code-block is invoked with a context u, all tokens

. generated by the invocation carry this context. The program is initiated when some code-block P is

invoked with a null context 0. Each activity generated by this invocation has a unique activity

name of the form <<>.PS.0>. Thus, each subordinate code-block invocation, receives a unique

context of the form <<>P.S.0>. For example, in Figure 2-5, operation V within code-block P invokes

code-block Q. Operation S' within Q generates another invocation, and so on. The program

unfolds as a tree of code-block invocations as indicated by Figure 2-5.

By induction, each activation provides its children with a unique context. Therefore, each activity

is assigned a unique activity name. Assuming the program terminates, all branches of the

invocation tree are finite. The leaves generate no further invocations: thus, they are well-behaved

"o

§ §2.5 The U-interpreter 19 4.

a

W: ((>.p.s.o>6

(((PV.>.PVO..'O

((>PW.O.S':. 1

(((>.P.V.O>.Q.TX.O>

T': I

*iue25 Treo oelckIvctos7

...

20 The U-interpreter § 2.5

and return tokens to their parents. By induction, each of the apply"' operators receive a single result

and every code-block activation is well-behaved. Therefore, the entire program is well-behaved.

Hence, all terminating dataflow programs comprised of acyclic code-blocks, of well-behaved

operators, conditional schemata, and apply schemata are well behaved.

2.6. Loop Code-blocks

Iterative or tail-recursive constructs are an important special class of computations which should

be carried out efficiently. These constructs are represented conveniently by the loop code-block

schema depicted in Figure 2-6. This is the only form of cyclic graph allowed in dataflow programs.

A loop code-block, like the acyclic code-block, has a begin operator, an end operator, and a well-

behaved internal graph. However, the internal graph of a loop-code block has substantial structure.

As suggested by Figure 2-6 it consists of four acyclic subgraphs, plus feedback arcs. A loop variable .

°: is associated with each feedback arc. The header, trailer, and loop body may be arbitrary acyclic

giaphs. The predicate may be any acyciic graph producing a single boolean output. The results of

the header provide the first wave of tokens to the switches and the loop predicate. The output of

the predicate is connected to the control input of each of the switches. In Figure 2-6 the one-ended

arcs incident on the switches should be interpreted as outputs from the predicate. The initial wave

of tokens have 1 = 0. If the result of the loop predicate is 'true', the wave of tokens is routed to the

loop body. Eventually, it produces a wave of tokens on the outputs of the loop body. The D o

operator increments the iteration number in the activity name, leaving the data unchanged. Tokens

circulate through the loop body until the loop predicate turns 'false'. All tokens belonging to

iteration k have I = k. When the loop predicate turns 'false' it causes the final wave oftokens to be

routed to the D"1 operators. D1 sets the iteration number to 0 and passes the data on to the trailer.

The behavior of the D and D is given by:

{<U.C.SD., v} I- {<U.C.S.I+1, v>}, and

{<U.C.SD'.a, v} F- {<u.C.S.0, v>}.

Note that loop variables need not circulate in clearly defined waves; some may circulate faster

than others. The relative rate at which loop variables circulate is constrained only by the data

dependencies. The iteration number specifies the iteration to which a given token belongs, so there

can be no interaction between distinct iterations.

.- .S

§ 2.6 The U-interpreter 21

switch switch switch
T FT F T F

loop body DD D

trailer block
DD D

Figure 2-6: Loop Code-block Schema

22 The U-interpreter § 2.6

N
As a simple example, consider the program to compute Z F(i), shown in Figure 2-7. The index

i=O
variable I circulates and initiates N activations of F. SUM circulates, accumulating partial sums. We

can assay the behavior of this program, assuming fair scheduling of operations. If F requires a long

time to compute, I will circulate substantially faster than SUM. In this case, many distinct

invocations of F will execute in parallel. A large collection of 'true' tokens and a single 'false' token

will queue on the control input to the switch operator for SUM. As the invocations of F complete,

SUM will circulate and eventually produce a result. Note that the activations of F need not complete

in the order of initiation. They will, however, be summed in order, since the iteration number on

the token produced by F must match with that on the token for SUM, in order to enable the +

operation.

Suppose, on the other hand, F requires very little time to compute. Then, the summation offers

very little parallelism. The index variable can only generate a few invocations of F before the first

invocations terminate. Only a few invocations of F will be in execution at any time, and I will lead

SUM by only a few iterations.

The analysis above relies heavily on the assumption of fair scheduling. The class of legal

executions under the U-interpreter allow for unfair scheduling, as well. At one extreme, all N

iterations of the index variable may complete, and then all N instances of F may execute in parallel,

regardless of the time require to compute F. At the other extreme, the two loop variables, I and

SUM may circulate together; one iteration completes before the next begins. Both of these schedules

are valid under the U-interpreter, regardless of the computational requirements of F.

2.7. Dynamic Structure of Dataflow Programs

The static structure of dataflow programs is dictated by the graph schemata described in the

preceding sections; a dataflow program is simply a collection of code-blocks, related by code-block
-S•

invocation. This section examines the dynamic structure of dataflow programs in execution. The

invocation tree is a key concept, for it provides a way to visualize the manner in which a program

unfolds. By examining the invocation tree we can glean how resource allocation is embodied in the

abstract model and how the resource requirements of a program are affected by the execution -

order.

.'0 " -

.. *. *.

§ §2.7 The U-interpreter 23

1< 0

T F T F

+0

+

D D

Figure 2-7: Graph For I Fi
I=

24 The U-interpreter §2.7

j Section 2.5 described the invocation tree, assuming code-blocks to be acyclic. The observations

made in that section continue to hold when loop code-blocks are included. A program unfolds as a

tree of code-block invocations. Each invocation is assigned a unique context using the activity

name of the corresponding apply' activity. Each activity in the computation is assigned a unique

activity name, denoting its position in the invocation tree. The invocation tree, and the activity

names assigned within it, are independent of the execution order, iLe, all execution orders of a given

program on a given input produce the same invocation tree. The primary difference introduced by

loop code-blocks is that a code-block invocation may represent a large, dynamically determined

quantity of computation, since an invocation may involve many iterations Each iteration may

generate subordinate invocations, so the branching of the tree may be large and dynamically

determined. The various subordinate invocations generated by a loop code-block are distinguished
by the iteration number of the parent buried in their contexts.

As an example, consider the computation depicted in Figure 2-8. Code-block P invokes two

code-blocks Q and R. R is a loop code block, and each iteration invokes T. Each invocation of Tis
assigned a unique context of the form <<<>.P.S0xR.s R.1J>.

The invocation tree unfolds as a program progresses. At any time, only a portion of it (a subtree)

is active; some portions have completed; others have not yet be initiated. From a resource

management viewpoint, the active subtree is extremely important. A branch comes into existence " .

when a code-block is invoked and disappears when it terminates. The active subtree describes the

current state of the computation. At any time, the resource requirement of a program is precisely

the resources required to support the active subtree.

Code-block invocation is the primary resource allocation operation in the U-interpreter.

Abstractly, a code-block invocation requires a context, a certain amount of token storage, and a

certain amount of processing support. It represents a block of computation which will execute

independently of its parent until it completes. Throughout its execution there will be tokens

residing in the graph. A number of activities will be generated and performed. A context is

allocated by simply extending the activity name: since activity names are unbounded, this can be

done in an elegant, local fashion. Token storage and processing support is implicit: these resources

are also unbounded.

.

§ 2.7 he U-interpreter 25 .

aS S

,0

0

Figure 2-8: Invocation Tree with Loop Code-blocks

Even though the overall invocation tree is independent of the execution order, the size of the

active subtree (and hence the resource requirements) over time is extremely sensitive to the

execution order. Consider the example, in Figure 2-8. The subtree rooted at Q may be active

before, after, or in parallel with the subtree rooted at R. If these subtrees represent substantial

blocks of computation, the resource requirements of the program will depend heavily on whether

these two subtrees are active concurrently, or not. The resource requirements of a program can be

regulated by restricting the breadth of the active portion of the invocation tree, but this limits the

amount of exposed parallelism as well. The breadth of the active subtree in a particular execution

order corresponds closely with the amount of exposed parallelism.

•S

S o

26 The U-interpreter § 2.8

2.8. Summary of the U-interpreter Model

A dataflow program, under the U-interpreter, is a collection of loop and acyclic code-blocks,

related through code-block invocation. The internal structure of these code-blocks is restricted by a

collection of graph schemata to ensure that programs are determinate. In general, there are many

legal execution orders for a program; they offer differing amounts of parallelism, but all produce

the same results. The individual operations of a dataflow program are functional in the sense that

their results depend only on their inputs; they have no internal state and no side-effects. A program

in execution unfolds as a tree of code-block invocations. Each invocation is assigned an unique

context by extending the activity name of its parent. Each activity is assigned a unique activity

name, which specifies its positio:i in the invocation tree.

Code-block invocation is the primary resource allocation operation. A new context is generated,

and all resources required to support the invocation are implicitly provided. All tokens generated

by the invocation will carry the same context. The token storage requirement of an invocation is

simply the maximum number of tokens that co-exist carrying the associated context. This is

extremely dynamic and depends on the particular execution order that is followed. Processors do -

not enter into the definition of the formal model directly; the model is defined in terms of

propagating tokens through graphs. Each activity implicitly requires processor support, so we

might define the processing requirement of a code-block invocation as the number of activities .

generated by the invocation.

Activity names are potentially unbounded. The context portion grows linearly with the depth of

the invocation tree. The iteration number grows logrithmically with the number of iterations

performed by a loop code-block invocation. Generating new contexts by stacking the activity name

performs two essential functions: it provides a unique context for the subordinate invocation, and it

provides a return activity name. The growth of activity names can be reduced if these two

properties are separated. Since the invocation tree is indeed a tree, as opposed to a general graph, .

never do two independent activities need to generate the same new context. The context for a new

invocation be simply a unique identifier, with no further semantics. This requires that the return

activity name be passed explicitly to the subordinate invocation. With this approach, the context

part grows logrithmically with the size of the invocation tree. If contexts are reused the size of the

-9?i .

§ 2.8 The U-interpreter 27 -

context is logarithmic in the size of the active subtree. Note, this requires detecting when

invocations terminate and releasing the associated contexts. Extending the activity name a allows

contexts to be generated in a completely decentralized fashion; retaining this property with the

unique identifier approach requires care.

The resource requirements of a program depend on how the invocation tree unfolds. If we

assume fair scheduling, the tree unfolds in a breadth-first manner. The active subtree grows very

broad, very quickly. Assuming an infinite number of processors and no communication delay, this

greedy schedule is optimal. It generates a tremendous anount of parallelism. However, the S

resource requirements of a computation are determined by the size of the active subtree becomes -

during the computation. A less eager approach which limits the amount of exposed parallelism by .

unfolding branches in a depth-first manner requires significantly less resources. In a practical
.0

realization of the model, a limit must be placed on the number of concurrent activities. Thus, to

allow large programs to execute on the machine, it may be necessary to limit the breadth of the . - -

active subtree.

'. " - " "

, -.- .

-9°,

S.

..0 .:

28 The U-interpreter §3.0 -S

S

0

S

S

S

S

0

-S

-S

S

- :.:.:.:: .

§ 3.0 The Tagged-Token Dataflow Architecture 29

Chapter Three

The Tagged-Token Dataflow Architecture

The Tagged Token Dataflow Architecture is a multiprocessor based on the U-interpreter, under

development by the Functional Languages and Architectures Group at the Massachusetts Institute

of Technology. It consists of a collection of processing elements (PEs), each a complete dataflow

computer, connected via a packet switched communication network. The machine is intended to

exploit the diffuse, unstructured parallelism common in general purpose computation. Also, it is .

intended to be truly scalable; performance should improve with the simple addition of processing

elknents. Parallelism is exploited by allowing independent activities to execute on different PEs.

The dataflow scheduling mechanism provides automatic, instruction level synchronization of

parallel computations. This mechanism also allows a dataflow processor to operate efficiently in

spite of long, unpredictable communication latencies. A processing element does not pause, as a

conventional processor might, when an instruction requires data from a distant processor or

memory module; it continues to execute other enabled instructions. The instruction requiring .

external data will be scheduled whenever the data arrives. Independent threads of computation are

interlaced in the instruction pipeline, this makes it possible invest a certain amount of parallelism in

masking communication latency [10]. The essential component of this architecture is an associative

waiting-matching store, which detects when instructions are enabled.

This chapter describes the Tagged Token Dataflow Architecture in detail. The basic machine

organization and operation is presented. demonstrating how the U-interpreter firing rule is realized.

The a variety of higher-level issues are examined, including: the distribution of work over the

machine, the structure of tags, and the resources associated with a code-block invocation.

..S

° °

30 The Tagged-Token Dataflow Architecture § 3.1

3.1. Basic Organization and Operation

The basic organization of the Tagged Token Dataflow Architecture is depicted by the block

diagram in Figure 3-1. The boxes represent pipeline stages; they operate asynchronously and are

connected via FIFO buffers. A processing element contains three subsystems: instruction

processing pipeline, data structure store, and PE controller. The stages of the instruction processing 0

pipeline reflect the basic steps in the execution of a dataflow instruction: detect when input tokens

are available, fetch the instruction, perform the operation, generate result tags, and finally dispense

result tokens. A data structure operation (eg., Appendor Select) causes a request to be sent to the

structure storage controller responsible for the appropriate data element. The PE controller

supports input/output, diagnostics, and resource management operations.

Data is passed between instructions as information packets, i.e, tokens, carrying a data value and

a tag. Tags function like activity names, with some important differences. An activity name

specifies the position in the invocation tree of a particular activity; by definition, all tokens destined

for a given activity carry the same activity name. No two activities have the same activity name. A

tag must specify where the match is to be performed, in addition to identifying an activity. To this

end, a tag carries four items of information: the address of the PE where the activity will take place,

the address within that PE of the instruction to execute, a context identifier, and an iteration

identifier. The size of the tag is fixed; they are not allowed to grow as the invocation tree unfolds.

All tokens destined for a given activity must carry the same tag. However, over the course of a

computation, a given tag may be associated with many different activities.

Upon arriving at a PE, a token enters the waiting-matching section. The tag it carries is compared

against the tags of each of the tokens resident in the waiting-matching store. If a match is detected,

the pair of matching tokens is purged from the waiting-matching section and forwarded to the

instruction processing pipeline. lnstnctions are limited to one or two operands. For a monadic

instruction, no match is required, so the input token bypasses the waiting-matching section. For a

dyadic instruction, a single match must be performed to enable the activity.

The machine language of the Tagged Token Dataflow Architecture is essentially an adjacency list

representation of dataflow graphs. Each instruction specifies an operation code and a list of

addresses, representing successor instructions to which results should be sent. The instruction-fetch

• -. S

§ 3.1 The Tagged-Token Dataflow Architecture 31

'0

Input I •

I

M atch

S torage
C o ntrolle r

. . .

I ~c I
C°Tmpu te i-ii -?

L I

Form
Token

Output

Figure 3-1: Organization of the Tagged Token Dataflow Architecture -

section reads the op-code from the address specified in the tag. fetches whatever constants are

required, aligns the operands, and sends the op-code and data to the ALU for processing. It also

sends the instruction address and data to the compute-tag section. The compute-tag section

0i!)::::

§ 4.1 Resource Management Problems 45 0

of the final result does not guarantee that all computation within the invocation is comp1 .te. We

can not rely on time-outs, or the like. The computation of F, for example, may continue

indefinitely8. Termination must be detected explicitly, such that when the last activity of an

invocation has fired a signal is generated for the resource manager indicating completion9 .

F

switch switch
T F T F

+0

Figure 4-1: Typical Termination Problem

4.2. Token Storage Overflow 0

In Chapter 3 we observed that the Tagged Token Dataflow Architecture will deadlock if the

facility for storing tokens overflows. In order for the machine to operate correctly it must be

guaranteed that no token store in any PE ever overflows. How is this to be enforced? Observe that

8In pracuce, dataflow implementations often include operations which have side-effects, such as write: these may have

no output arcs. since they generate no result. Thus. they also introduce problems concerning termination detection

9The techniques presented here for detecting termination are a refinement of those developed by Vinod Kathail,
Ke-,ha% Pingali. and Arvind in implementing the Id compiler. The conditions developed here for detecting termination
are needed for the other aspects of the theory to hdld together.

" .

.-...- - -" " - -" , .i .- - - - " . ..• . . . u" -, , ° " M "

44 Resource Management Problems § 4.0

them explicitly since they are managed directly by the hardware. When an invocation is initiated in

a domain, the waiting-matching stores of the PEs in the domain must accommodate the tokens

generated by the invocation: the exact amount of token storage required by an invocation is not

known in advance and depends on the particular execution order the invocation follows. Allocating

a CBR implicitly reserves a collection of tags to the invocation; the iteration identifier may take on a

range of 256 values; the instruction offset may take on a range of 16K values. These implicitly

allocated resources raise potential hazards. What happens if a waiting-matching store becomes full

and can not accommodate tokens for an invocation as required? What happens if a loop performs

more than 256 iterations? Explicitly allocated resources raise another kind of problem. What

happens if no domain offers sufficient resources to support an invocation. We may be tempted to

conclude that the program is simply too large for the machine. After all, this is what we would

conclude for a conventional machine if a program causes the stack to overflow. It may not be valid 0

for a dataflow machine, however, because the resource requirements of a program depend on how

the invocation tree unfolds. The real problem may be that too much parallelism is exposed. These

problems are examined in detail below.

4.1. Termination Detection

The resource capacity of a machine ultimately limits the size of program that can execute on the

machine. In the Tagged Token Dataflow Architecture, resources are allocated whenever a code- 0

block is invoked. For reasonably large programs to execute on the machine, completion of code-

block invocations must be detected, and the associated resources released. If the resources

associated With an invocation are not released, the resource capacity of the machine dictates a limit 0

on the o~erall size of the program. If resources are released and reused, the resource capacity of the

machine limits the number of invocations that can be active concurrently. How do we determine

when an invocation is complete? We might be tempted to claim that an invocation is complete

when the end instruction executes: unfortunately, this is not always correct. Activity may continue 0

within an invocation after the end fires. We must determine that all the activities comprising an

invocation have fired.

The problem alluded to above is exemplified in Figure 4-1. If the predicate P is 'true', the output 0

of F is used to produce the final result. If P is 'false', the output of F is discarded. Thus, generation

" " °

§ 4.0 Resource Management Problems 43

S

Chapter Four

Resource Management Problems

The preceding chapters presented an abstract model, the U-interpreter, and a concrete machine, S

the Tagged Token Dataflow Architecture. The major difference between the model and the

machine is the viewpoint adopted toward computational resources: unbounded and implicit on the

one hand, bounded and explicit on the other. This chapter outlines four major resource

management problems which must be addressed for large programs to execute efficiently on the

Tagged Token Dataflow Architecture. The remaining chapters of the thesis provide solutions to

tise problems.

The essential properties of the U-interpreter model are (i) dynamic scheduling of operations 5

based on the availability of data and (ii) automatic unfolding of programs. The first aspect is

addressed in the Tagged Token Dataflow Architecture through the use of an associative waiting-

matching store. The second aspect is tricky because the abstract model assumes unbounded

resources, and relies rather heavily on this assumption, whereas the machine must operate within

strict resource constraints. Chapter 3 outlined a strategy for dealing with this problem: introduce a

resource management system which maintains the status of all machine resources. By suitably

restricting the ways in which code-block invocations are distributed over PEs, it is possible to keep *

the complexity of managing these resources within reason.

The introduction of a resource management system addresses only part of the problem, however.

Let us review the machine resources associated with a code-block invocation in the Tagged Token .

Dataflow Architecture. Certain resources are allocated explicitly a CBR, program memory for

code, and program memory for constants. The resource manager checks that sufficient quantities of

these resources are available to support an invocation and allocates the required amount. Other

resources are allocated implicitly: token storage, and tags. The resource manager need not allocate

-S.

42 The Tagged-Token Dataflow Architecture § 4.0 -

S

•S--22?

p-.i

S -. ''

•0.i?

S

0 l . -2

1(, '-

§ 3.4 The Tagged-Token Dataflow Architecture 41

requires the CBR and iteration identifier from the input tag, the contents of the corresponding .

CBR. and the successor instruction address list. Currently the tag is 44 bits in length, partitioned as

follows:

PE# 8 bits,
CBR 12 bits, 0
tteration 8 bits, and
instruction offset 16 bits.

3.5. Summary

The Tagged Token Dataflow Architecture captures the essential dataflow instruction scheduling

mechanism of the U-interpreter through the use of an associative waiting-matching store. The

machine leans toward a fair scheduling of instructions, except for perturbations introduced by the
.0

vagaries of external communication. Data is passed between instructions as labeled tokens, with the

label identifying the activity for which the token is destined. The nature of the labels carried on

tokens is an important point of difference between the model and the machine. Activity names in

the U-interpreter are potentially unbounded and identify a particular activity within the invocation

tree. Tags in the Tagged Token Dataflow Architecture are bounded in size and identify the

machine resources delegated to performing a particular activity. This difference is indicative of the . -

basic difference between the model and the machine. The model is resource independent, with

important assumptions of unboundedness. The machine must operate within hard and fast .

resource constraints.

.

40 The Tagged-Token Dataflow Architecture § 3.4

/ Resource

UseManager /Begin

Inokn /oeblc Inoe od-lc
Fiur 34 Ue chm

P~ba isaddrss figurbae P-E Us te Scma

PE# th nube Pb+L/ioN)*~ La/C pe andom

PCC

The~~b iiecntns adderess aove base er in the oinc, eises Tuta eerto

§ 3.3 The Tagged-Token Dataflow Architecture 39

constant area by the loop header. The body of the loop is not permitted to execute until the -

constants have been stored in the constant area of each PE in the domain. A special counter is used

to detect when the constants are in place. The constant area is an additional resource associated K -:

with a loop code-block invocation.

Invocation process

The domain/subdomain structure circumscribes how resources can be allocated to a code-block

invocation. The actual allocation and initialization is performed by a resource management system

which maintains the status of system resources, much like a conventional operating system. The

U-interpreter apply schema is replaced by a Use Schema, which engages the resource management

system (the manager), as shown in Figure 3-4. Upon receiving an invocation request, the manager

chooses a domain to perform the invocation. It allocates a code-block register and causes the code

to be loaded in the domain, if it is not already present When loading the code, it chooses the

subdomain size, and the number of iterations per subdomain7 . For a loop code-block a constant

area is allocated in program memory as well.

3.4. Tags

The structure of the tag is essentially dictated by the code-block invocation mechanism described

above. The tag is composed of four, fixed size fields: <PE#, CBR, Iteration Identifier,

Instructiorn Offset>. The PE# specifies the PE which is to execute the instruction. The CBR

specifies the code-block register which records the disposition of the code-block. The instruction

offset gives the address, relative to the base-address of the code-block, of the instruction to execute.

The generation of result tags given the instruction, the input tag, and the CBR is fairly straight

forward. An instruction specifies the relative address in the code-block of each of its destination

instructions. Suppose the destination instruction address is a, and the iteration number is 1. The

result tag is computed as follows. _

7The author has implemented such a resource management system as part of a detailed simulation of the Tagged Token -

Dataflow Architecture. This provides a basis for investigating various resource allocation policies. A variety of load-
leveling policies have been implemented to distribute work over domains.

9 ''- -

38 The Tagged-Token Dataflow Architecture § 3.3

distribution of activities comprising a code-block invocation across a domain is statically -

determined by the order in which instructions are listed in the representation of the graph. Care is

required to assure that no instruction is split when the graph is partitioned.

Loop code-blocks allow two degrees of freedom in distributing activities across a domain: -

activities within an iteration may be distributed across a collection of PEs, and different iterations

may be assigned to different collections of PEs. A domain is divided dynamically into disjoint

subdomains, each a set of consecutively addressed PEs. A copy of the code-block is allocated across

each subdomain, in the manner described in Figure 3-3. Note that the code per PE is I'/m'l, S

where m" is the number of PEs per subdomain. Iterations are dynamically assigned subdomains

based on iteration number; the first k iterations are assigned to the first subdomain, the next k to

the next, and so on, wrapping around when the last subdomain is reached. The partitioning into

subdomains and the number of iterations per subdomain may differ for different code-blocks in a

domain.

For a code-block to be invoked in a given domain, a copy of the code must be loaded there.

However, once it is loaded, many invocations may share the copy of the code, i.e, many CBRs may

reference the same copy of the graph. A CBR contains essentially the following information: base -

address, domain size, code per PE, subdomain size, and iterations per subdomain. The subdomain

size, code per PE, and number of subdomains per domain are restricted to being powers of two so .

that tags can be generated by simple shifts and masks6.

Constant Areas

One particular inefficiency with loop code-blocks is that arguments which serve as constants S

throughout the execution of the loop must be circulated through the body of the loop. Numerous

irstructions are executed just to pass these constants along. For example, in the inner loop of a

matrix multiply, six of the eight loop variables are input parameters which serve as constants. Each

constant passes through two instructions per iteration. The Tagged Token Dataflow Architecture

offers a way to avoid circulation of constants. A loop code-block invocation has a constant area

associated with it. Constant areas are in program memory. Constant arguments are stored in the .

60
6It is actually these shifts and masks that are kept in the CBR.

. . . o . .

§ 3.3 The Tagged-Token Dataflow Architecture 37

•

0
CBR Progamn CBR Progam CBR Progam CD3R Progain

Memory Memory Memory Memory

PE i PE i+ 1 PEi+2 PEi+3

Subdomain Subdomain

Domain "I-"

Figure 3-3: Allocation of Program Memory

allocated in each PE, starting at the same base address in each. The code-block occupies a

rectangular window across the domain, as suggested by Figure 3-3. Co-ordinating resources in this

manner is trivial; a single memory map pertains to every PE in the domain. The code-block register .

records the base address, the domain size (m), and the code per PE (rI/mi).

Local distribution of activities

The distribution of the activities comprising an invocation of an acyclic code-block is dictated by

the distribution of the instructions which form the program graph; each activity executes in the PE

in which the corresponding instruction resides. Each instruction in the graph fires at most once per -

invocation. Since the code-block is represented by an adjacency list of the graph, instructions may

be listed in any order. Each instruction specifies the relative address of its successors, within the

code-block. Those instructions listed in the first 'l/mi bytes are executed by the first PE in the

domain, those in the next 'l/ml bytes are executed by the second, and so on. Thus, the

.O

36 The Tagged-Token Dataflow Architecture § 3.3

invocation are allocated implicitly. Processors are not specifically involved. In the Tagged Token

Dataflow Architecture, a code-block invocation is explicitly assigned to a collection of processors.

These processors must provide all the computational resources required to support the invocation.

Collectively, they must have a copy of the graph; they must provide storage for tokens generated by

the invocation; and they must perform the activities it comprises. The manner in which PEs co- 0

operate to perform a code-block invocation is an essential aspect of the Tagged Token Dataflow

Architecture.

Processor domains 0

If processing elements are allowed to cooperate on a code-block invocation in arbitrary ways, it

becomes difficult to coordinate resources. For example, if program memory becomes fragmented,

it may be difficult to find a block of available space of a given size in each of a collection of PEs. To

reduce the complexity of resource allocation, a hierarchy is enforced on the resources in the

machine. The PEs are partitioned into a collection of domains, each a set of consecutively addressed

PEs. This partition is fairly static; it is fixed for entire execution of a program. When a code-block

is invoked, the invocation is assigned to a domain. Only the PEs in the assigned domain will 0

co-operate to perform the invocation. Resources are allocated uniformly across a domain, so there

is no difficulty in co-ordinating resources. Resource allocations in separate domains are completely

independent, and there is never any need to co-ordinate them.

When a code-block invocation is assigned to a domain, a code-block register (CBR) is allocated to

the invocation. The register number serves as a context identifier, as suggested at the end of the

preceding chapter. It uniquely identifies the invocation, until the invocation terminates;
whereupon the identifier (and register) may be reused 5. A code-block invocation is assigned the ..

same CBR throughout the domain, as suggested by Figure 3-3. The code-block register is loaded

with the base address of the of the code-block associated with the activation.

Program memory is allocated uniformly throughout a domain as well. Suppose an invocation of

an acyclic code-block I bytes in length is assigned to a domain of m PEs. Then rl/ml bytes are

5
5This description offers a slight simplification of the Tagged Token Dataflow Architecture, as it has been presented in

the past [6]. Colors and color-block areas have been eliminated, giving the machine a cleaner structure.

.9°

§ 3.3 The Tagged-Token Dataflow Architecture 35

0

4 S-Unit

I I-

Enabledj Results

M E-Unit

Figure 3-2: Basic PE Components

* 3.3. Code-block Invocation

The machine operation, described above, involves some important assumptions. First, when a

token arrives at the waiting-matching section of a PE, the instruction it is destined for must be

* ~resident in the local program memory. Second, tags must be generated for result tokens, using only..

* the input tag and the local processor state, such that all tokens destined for a particular activity

* receive the same tag. The assignment of activities to processors is completely outside the abstract

model, as is setting up processors to support a given assignment. Note that in the U-interpreter,

* activity names can be generated using only the input tokens and a description of the graph. The

situation is somewhat more complicated in the Tagged Token Dataflow Architecture because tags

are of fixed sized, coupled with the allocation of resources, and coupled with the distribution of

activities. To understand how these issues are addressed in the Tagged Token Dataflow

Architecture, it is necessary to understand the run-time structures associated with code-block

invocations and the structure of tags. This section outlines the process of code-block invocation and

* $ the associated run-time structures. The next section describes the structure of tags and how they are

-generated.

* In the U-interpreter, invoking a code-block merely involves assigning it a new context. All

- computational resources are assumed to be unbounded, so the resources required to perform the

. - .- - -- - - - - - - - - - -

34 The Tagged-Token Dataflow Architecture § 3.2

Clr The number of matched tokens and tokens which require no partner is exactly the number of

simultaneously enabled activities. This depends on the nature of the program and the manner in

which it unfolds, not the relative speeds of the hardware components. The number of

simultaneously enabled activities in a PE is a measure of the amount of parallelism exposed in the

invocations executing on the PE. This may grow extremely large, essentially as large as the total 0

*number of tokens in co-existence. As soon as the number of simultaneously enabled activities

exceeds the amount of token buffering in the PE, the PE will deadlock.

To understand this problem at a concrete level, the PE can be viewed as essentially two

components: a storage and scheduling unit (S-unit) and an execution unit (E-unit). These are

connected by FIFO buffers, as shown in Figure 3-2. They may be internally pipelined, or whatever.

The E-unit provides little or no storage for tokens. The buffer on the left contains activity packets

for enabled activities (Le., matched token pairs and tokens which need no partner). The buffer on

the right contains result tokens which have not yet been considered for matching. In order for the
activity packet buffer to remain small, the E-unit must perform activities at the same rate as the

S-unit produces activity packets. In order for the result buffer to remain small, the S-unit must

receive tokens as fast as the E-unit produces results. During phases of the computation in which the

amount of exposed parallelism is expanding, the rate at which activities are enabled exceeds the rate

at which activities are performed. Data for enabled activities builds up in the buffers, assuming no
WS

matched pairs are retained in the S-unit. If the E-unit can process activities as fast as the S-unit can

enable activities, the result buffer will fill up. Once the result buffer is full, the E-unit must wait for

the S-unit to process results. This causes the activity packet buffer to begin filling up. The situation

is reversed if we assume the S-unit can enable activities as fart as the E-unit can produce results. S

Regardless of the relative speeds of the two components, once the number of concurrently enabled

activities exceeds the amount of buffering the processor deadlocks; each unit requires the other to

remove a packet from an input buffer in order to remove another packet itself.

To avoid deadlock, any cycle of data paths in the Tagged Token Dataflow Architecture must

include an effectively infinite buffer i.e., a buffer which will never beccme entirely full. Thus, in

the remainder of the thesis we assume the machine to be modified to include (i) a token buffer

within the input section to hold surplus tokens, except those requiring partners, and (ii) a facility

within the waiting-matching section to hold surplus matched token pairs.

• .- -

§ 3.2 The Tagged-Token Dataflow Architecture 33 S

I We might assume a certain amount of inexpensive (non-matching) overflow store, so that in this

circumstance the incoming token could be put aside. At best, this postpones the problem. If the

* overflow store is full, the deadlock occurs. The PE may come to a halt even if the overflow store is

-not full. We assume that the overflow store has no matching capability; otherwise it would be part

- of the matching store. If a pair of matching tokens both reside in the overflow store, the match will -

go undetected. Tokens can only be matched if they reside in the matching store simultaneously.

We might try to fix the problem by searching linearly through the overflow store when a new token

harrives or by shuffling tokens randomly between the matching store and overflow store, but these

approaches fail to address the real problem. The token storage resources are simply over-

committed.

A variety of dataflow machine similar to the Tagged Token Dataflow Architecture employ a

two-level matching store. A small, fast, associative store and a larger overflow store with limited

matching capability. When the associative store becomes full, tokens are placed in the second level

store. If a token arrives and fails to find a partner in the associative store, the second level store is

searched, either by scanning through the entire store or by tracing down a linked structure. In

either case, performance degrades dramatically when the first-level store is full. The deadlock

arguments above pertain if both stores become full. Performance considerations dictate that in fact

the first-level store should not be over-committed.

There is a second, more subtle deadlock hazard arises from the handling of matched tokens and

tokens which do not require partners4. The description of the machine operation in Section 3.1

implies that whenever a match is found the pair of tokens are purged from the waiting-matching

store and forwarded to the instruction processing pipeline. Tokens which do not require a partner

bypass the waiting-matching section entirely. Such a policy will cause the PE to deadlock, unless

token buffers essentially the size of the matching store itself are provided. The FIFO buffers

between stages in the Tagged Token Dataflow Architecture are intended to be small (two to five

tokens): their purpose is to absorb variations in packet flow caused by irregular operation times and

interactions with the network. They are not intended to store large numbers of tokens.

4

1 o the author's knowledge, this potential hazard has not been discussed at all in the literature.

-i,: - ~~~~~~.... -, ::--- .-. .-.--.-...-.-.. :..-.......i;._.......)..

32 The Tagged-Token Dataflow Architecture § 3.1

operates in parallel with the ALU, determining the tag for each of the destination activities. Results

and tags are merged in the form-token section, and tokens are delivered to the output section to be

dispensed to the network. They will be routed to the PEs address specified in their tags.

* - Data structure operations are processed in two steps, first by the instruction pipeline, then by a

structure controller. Consider, for instance, a select instruction. It is enabled when it receives two

inputs, a descriptor for a structure and an index. The ALU computes the address of the selected

element, while the compute tag section constructs a tag for the activity which is to receive the result.

Ali The result tag can not be used immediately, because the data resides in a possibly distant structure

store. The element address and the result tag are sent to the appropriate structure storage

controller. The structure storage controller reads the specified element and forms a token contain

this data value and the result tag accompanying the request. The result token is dispensed to the6

network and directed to the successor of the select activity.

3.2. Operating Assumptions

The fundamental operating assuption in this architecture is that a token arriving at the waiting-

matching section must be permitted to enter; otherwise the machine will deadlock. This potential

hazard should be fully understood. Token storage is managed directly by the hardware. Storage is

allocated whenever a token enters the waiting-matching section and fails to find a partner. It is

deallocated when a matched pair of tokens is purged and passed on to the instruction processing

pipeline. This resource presents a serious deadlock potential; it is in finite supply, non-

preemptable, and acquired incrementally [14].

Suppose the waiting-matching store is completely full of tokens awaiting their partners. What

happens when an additional token arrives at the waiting-matching section? It cannot be ignored,

because it may match with a token waiting in the store; the only way for storage to be made

*available is for matches to occur! What happens if this new token does not find a match? It can not

be added to the store. It can not be destroyed. Sending it back out into the network to return at a

later time only postpones the problem. The collection of code-block invocations executing on the

PE are deadlocked; each has acquired a portion of the token store and requires more in order to

complete its execution.

- - -t a

46 Resource Management Problems § 4.2 -

- at any point in a code-block invocation, the token storage requirement of the invocation is simply 0

the number of tokens in existence, belonging to the invocation. At the time a code-block is

invoked, if enough token storage is reserved to accommodate the maximum number of tokens that

can possibly co-exist for the invocation, the token store can never overflow. This places the onus of

avoiding token-storage overflow on the resource management system. A code-block invocation can

not be assigned to a domain if the invocation may cause the token store to overflow. This

observation has important ramifications for resource management. First, it is necessary to bound

the worst-case token storage requirement of each code-block in a program in advance, i.e., prior to

executing the program. Second, when a code-block is invoked, the load on the waiting matching

store must be taken into account in determining whether a domain has sufficient resources to

support the invocation. Enough token storage should be reserved to accommodate the maximum

number of tokens that could be in co-existence for the invocation, With two forms of token

buffering, as suggested in Section 3.2, the load on each store must be accounted for.

Viewing token storage in this way has important ramifications in the design of the processing

element as well. The size of the waiting-matching store is a fundamental design parameter for 0

machines like the Tagged Token Dataflow Architecture; it will ultimately determine the

organization of this critical cc)onent of the machine. How large this should be has been a

longstanding open question in the dataflow community. There have been a variety of attempts to -

answer this question empirically by executing benchmark programs on real or simulated machines.

In light of the preceding discussion, the answer is quite simple; it is primarily a question of

balancing resources. If the PE is intended to support I simultaneous code-block invocations, the

size of the waiting matching store should be l times the typical worst-case token storage requirement S

of a code-block invocation. For example, each PE of the Tagged Token Dataflow Architecture has

4K CBRs. So if the typical token storage requirement of a code-block invocation, loops included, is

100 tokens, storage for 400K tokens should be provided. The typical token storage requirements of

code-blocks abstracted from a broad class of programs is a far more useful metric than the overall

token storage requirements of a collection of benchmarks. The former metric captures a particular

aspect of typical program structure, analogous to the average size of the code for a procedure. The

latter reflects the happenstance of interactions within particular programs and is greatly dependent

on the input data.

* S

* -. --..- 'i..-. -

§ 4.3 Resource Management Problems 47

4.3. Tag Management

Allocating a CBR effectively reserves a 2-dimensional space of tags, delimited by the 16 bits of

instruction offset and 8 bits of iterations identifier. The size of the instruction offset limits the

amount of code that can be loaded into a PE for a single code-block. This limitation causes no

serious trouble, because 16K is fairly large compared to the average size of a code-block, and a

code-block can always be split into smaller code-blocks. The size of the iteration identifier field is a

serious limitation. Many loops perform more than 256 iterations! To guarantee that this field can

never overflow, it would have to be made quite large, say 40 bits. Such a large tag would introduce

significant overhead. Thus, it is important to deal earnestly with overflow of the iteration identifier

field. There are two possible ways to deal with this problem: extend the iteration field by allocating

multiple CBR, or reuse iteration identifiers within a CBR. The remainder of this section examines
the pros and cons of each approach. 0

Consider first the use of multiple CBRs. In many cases, the number of iterations that a loop will

perform can be determined just prior to initiating the loop. FOR loops are a prime example. This
information can be conveyed to the resource manager with the invocation request, allowing it to 0

allocate a sufficient number of CBRs. The role of the D operator becomes somewhat complex;

when the iteration number overflows, it is reset to 0 and the next CBR is used. Unfortunately, this

solves the problem for only a specific class of loops. In general, the number of iterations a loop will
perform can not be determined in advance. Thus, there must also be a mechanism for allocating

additional CBRs dynamically.

Dynamic allocation of CBRs introduces a variety of complications. First, the role of the D

operator becomes quite complex. If the iteration field overflows and no pre-allocated CBRs
remain, a request for additional CBRs must be generated. This can be accomplished by providing

two sets of outputs for the D operator (rather like the Switch), one for normal operation and one for
the overflow case. One of the D operators in a loop is designated to generate a manager request for S

CBR allocation upon overflow. The overflow mode of the other D operators must receive the result

of the allocation request before continuing.

Second, there is a potential for deadlock, if CBRs are allocated incrementally. If many loop e
invocations are executing in a domain, the entire supply of CBRs can become exhausted before any

.. O.

48 Resource Management Problems § 4.3

of the loops complete. This deadlock can be avoided if termination of iterations is detected while

the loop is executing. A given iteration can depend only on earlier iterations; it can not depend on

later ones. If termination of iterations is detected incrementally, the early iterations numbers can be

released and reused. There must also be a mechanisn for queueing a potentially large number of

CBR allocation requests within the resource manager.

At this point we should consider the second alternative, reusing iteration identifiers with a single

CBR, because this essentially involves detecting termination of iterations. If termination of

iterations is detected, a loop never requires more than a single CBR; thus, extending the iteration 0

field is not necessary. In the extreme case, a loop can execute given only a single iteration

identifier; all activities for one iteration must complete before any of the next begin. More

generally, a loop can be given a supply of iteration numbers, which are treated like tickets. When

an iteration completes, its iteration number is released. An iteration number must be available for a

new iteration to begin.

If iteration identifiers are reused, the size of the iteration field limits the number of iterations that

can execute concurrently, rather than the total number of iterations that can be performed by the

loop. If the extent to which a loop can unfold can be controlled, Le, if the maximum number of

concurrent iterations can be bounded, the loop needs only a bounded number of iteration

identifiers. o

Reusing iteration identifiers with a single CBR appears to be the simpler approach, since no

special overflow handling is required. A new iteration can begin if an iteration identifier is

available. The remaining question is whether it is reasonable to limit the number of concurrent 0

iterations to, say, 256 per subdomain. The crux of this issue is how the amount of parallelism

generated by a loop compares with the amount of parallelism that a processing element can exploit.

Assuming reasonably fair scheduling, for a loop to unfold into a large number of concurrent

iterations, each iteration must involve a substantial block of independent computation. The amount

of parallelism a processor can exploit is essentially the length of the execution pipeline10 . Beyond

the point where the pipeline is saturated, additional parallel activity serves only to increase the size

of the queue of enabled activities, with no improvement in performance.

It is actually somcwhat greater than this because data structure operations are involve work not represented in the

pipeline.

t ,." , , " , .-..

§4.3 Resource Management Problems 49 -

Consider, for example, the summation loop discussed in Section 2.6. Suppose computing F and

accumulating the sum takes k times as long as circulating I through one iteration. Then, at most k

iterations can be in execution simultaneously. By the time the k +st instance of F is initiated, the

first instance is complete. Thus, for this loop to unfold into 256 iterations, F must involve the

equivalent of approximately 1K instructions, since circulating the index variable requires four 0

sequential instructions.

There are two important points to be gleaned from this example. First, if a loop possesses enough

parallelism to allow it to unfold into a large number of concurrent iterations, each iteration involves 0

a substantial computation. Such a loop can keep a large number of processors fully utilized. A loop

which possesses enough parallelism to allow it to unfold into 256 concurrent iterations involves

enough computation to keep at least 16 PEs fully utilized. If iteration numbers are allocated per

subdomain, 256 concurrent iterations per subdomain is more than ample for reasonably sized

subdomains. Secondly, it is trivial to construct loops which unfold into an arbitrarily large number

of concurrent iterations.

The fundamental question is not whether the iteration field should be 6, 8, or 12 bits, but rather,

how can loops which could potentially unfold into more than the available number of iteration

numbers be controlled to they operate within these limits. Ideally, loops should be structured so

that iteration identifiers are recycled automatically; by the time the k + ith iteration is enabled, the

ith iteration should have completed. This allows a loop to execute an arbitrary number of iterations

using k iteration identifiers. The D operator simply assigns the next iteration identifier, modulo k.

As a final note, there is an issue of architectural aesthetics. The decision to have the iteration field

be small enough that iteration numbers must be reused, rather than having the field be so large that

it cannot be exhausted, is a strong architectural directive. It is better to exploit this directive than to

circumvent it.

4.4. Program Deadlock

Each code-block invocation requires certain computational resources: CBR, token storage,

storage for code, and storage for constants11. Each of these resources are in finite supply, and so

llstorage for data structures is also required, but we are excluding data structures form consideration in this thesis.

.

50 Resource Management Problems § 4.4

place a limit on the number of code-block invocations that can be in execution concurrently on the.

Tagged Token Dataflow Architecture. Assumming that termination of invocations can be detected

and that token storage and iteration overflow can be solved, we should consider what happens if"- '

any one of these resources becomes exhausted. What happens if the manager receives an

invocation request and no domain has sufficient resources to support the invocation? The manager

might queue the request and wait for resources to be made available. Unfortunately, queueing the

request may prove useless, because all active branches of the invocation tree may require additional

invocations before they can begin to release resources. The various active branches of the

invocation tree are competing for system resources. Each has acquired certain resources, and

requires still more in order to complete its task. The program is deadlocked due to lack of

resources.

As the active subtree of the invocation tree grows (Le-, as code-blocks are invoked) resources are

allocated. They are only released when the active subtree retracts (Le., when invocations terminate).

System deadlock occurs when a program unfolds to the point where some resource is exhausted,

and yet no branch of the active subtree extends deep enough to terminate and begin releasing 0

resources. Additional resources are required to allow any branch to extend to the point where it -

will begin releasing resources.

In a conventional machine, one would say that such a program is simply too large for the -

machine. It requires more resources than the machine offers. In a dataflow machine, this claim is
not valid; it is possible for a program to deadlock even though no single branch of the invocation

tree requires more than a fraction of the total resources of the machine. The resource requirement

increases with the amount of exposed parallelism, regardless of the amount of parallelism the

machine can actually exploit. If a great deal of parallelism is exposed, the active subtree is broad

and bushy. This decreases the size of program that can execute on the machine.

The solution seems clear, avoid pursuing so much parallel activity. Unfortunately, this is not so

simple. Under the U-interpreter, a program unfolds in accordance with the parallelism present in , . -

the program. The Tagged Token Dataflow Architecture captures this aspect of the U-interpreter .. .

precisely. The machine provides essentially fair scheduling of activities, because enabled activities

are processed in FIFO order. If the amount of exposed parallelism in the program is greater than -"i ' .

.. S ,1

§ 4.4 Resource Management Problems 51 - -

the amount of parallelism the machine can exploit, the machine timeshares among the active

threads of computation on an instruction by instruction basis. The invocation tree tends to unfold

in a breadth-first manner, exposing maximal parallelism. A large program will unfold in this way

until the active subtree grows so large that some computational resource is exhausted and the

machine halts. Limiting the breath of the active portion of the invocation tree, allows larger

programs to execute on the Tagged Token Dataflow Architecture, without exhausting the

computational resources. The primary resource management problem is to control the unfolding of

programs so that enough parallelism is exposed to fully utilize the machine, while still allowing very

large programs to execute within the resource constraints the machine imposes.

A couple examples should help elucidate the problem. Consider a program which employs

binary recursion, and suppose the recursion extends 1 levels. A sequential, or depth-first, execution

requires at most I concurrent invocations at any instant. A breadth-first execution generates 21+1-1

concurrent invocations. Thus, if the machine has resources to support only 32K (/e., 215)

concurrent invocations and the program extends 15 or more levels, a breadth-first execution will

deadlock. A slightly less eager strategy will expose ample parallelism, and yet allow the program to

execute to completion. The limit need not be imposed by CBRs; other resources may be

constraining. A maximally parallel evaluation requires exponentially more resources than a

sequential evaluation.

As a more concrete example, consider the matrix multiply program shown in Figure 4-2. It is

written in the dataflow language Id [11]. The graph for this program has three code-blocks, one for

each of the loops. Collectively these occupy a total of 2.5K bytes of program memory. A single

copy of the code can be shared by many invocations. The constant areas are 64, 80, and 112 bytes in 0

length for the outer, middle, and inner loops, respectively. In a fully parallel evaluation, one outer

loop, n middle loops, and n2 inner loops may be in execution concurrently. Thus, 64 + 80n +

112n 2 bytes of program memory are required for constant areas alone. The token storage

requirements is approximately 10n2 with fair scheduling, /., about ten tokens per instance of the . -

inner loop12. Multiplying two 16 by 16 matrices in a fully parallel evaluation requires nearly 32K

12With a less fair scheduling, the token storage requirement is order(n). Each instance of the inner loop generates n
different values of k. which are only consumed as the summation progresses. Our empirical studies using a detailed

simulation of the machine generate close to the 1On 2 figure.

S

52 Resource Management Problems § 4.4

bytes of program memory and 2.5K elements of token storage, at approximately 10 bytes per token!

A single PE is saturated by about four instances of the inner loop, depending on the relative speed

of the structure memory and the instruction pipeline. By restricting the unfolding so that each PE

performs say four concurrent instances of the inner loop, the resource requirements per processor

are less than 1k bytes of program memory for constants and 50 elements of token storage. The 0

program would still fully utilize the machine.

PROCEDURE matrixmul (A, B, n)
I Matrices represented as array of rows I

(INITIAL C <- <> I Create empty structure I S
FOR i FROM I TO n DO I Fill in the rows I

C[i] <- (INITIAL RowC <- <> I Start with empty row I
FOR j FROM I TO n DO I fill in the elements I
RowC[J] <- (INITIAL sum <- 0

FOR k FROM 1 TO n DO I inner product I
NEW sum <- sum + A[i,k]*B[k,j] S

RETURN sum)
RETURN RowC)

RETURN C)

Figure 4-2: Dataflow Program for Matrix Multiply

System deadlock is difficult to avoid, in general, because the size of the subtree that will be

generated by a particular invocation can not be predicted. However, we should not despair. The

goal is not to determine in advance whether a given program will execute to completion on the

machine; the goal is to allow as large a class of programs as possible to execute efficiently on the

machine. By controlling the way programs unfold, it is possible to control their resource

requirements to a certain extent. The class of programs that execute to completion on the machine

enlarges, as unfolding is restricted. However, restricting unfolding limits parallelism. It is

unreasonable to strive to execute any program for which no single branch of the execution tree

exceeds the resource capacity of the machine: this would require that all the PEs act as resource

servers, while a single PE does the computation. The goal is effective parallel computation, so we

should not restrict parallelism below some multiple of the number of PEs in the machine. A

reasonable goal would be: a program should execute effectively and to completion on n PEs if no

single branch of the invocation tree exceeds the resource capacity of a single PE. The resource

management problem is how to control program unfolding, in accordance with the availability of

resources, to achieve this goal.

0-.ii -

§ 4.5 Resource Management Problems 53

4.5. Summary 0

The U-interpreter is a powerful, elegant framework for describing parallel computation. It does

not rely on the implicit timing properties of any particular architecture; all interactions are via

explicit transfer of tokens. It is not cluttered or constrained by the limitations or idiosyncrasies of

any particular machine. It removes all unnecessary controls, allowing programs to generate as much

parallel activity as possible. Realizing this .nodel on a concrete machine requires reinstating certain

controls. We do not want a program to generate an immense amount of parallel activity, if that

parallelism can not be exploited. We must recognize the resource limitations of the particular S

machine and introduces constraints that reflect these limitations.

This chapter has identified four major limitations of the Tagged Token Dataflow Architecture.

1. Termination of code-block invocations must be detected. The hardware provides no S
mechanism for determining when all activities for a code-block invocation have fired, so
program graphs must be embellished so that a particular node in each code-block is
guaranteed to be the last activity for an invocation of the code-block. A signal can then
be generated to inform the resource manager that the resources associated with the
invocation can be released. S

2. Token storage is limited. Even though this resource is managed directly in hardware,
the resource management system must take explicit care to avoid over-committing the
waiting-matching store and the token buffer in each individual PE. For this to be
successful, it is necessary to determine the worst-case token storage requirements of
code-blocks in advance.

3. The supply of iteration identifiers per invocation is limited. We do not want to allow . .
loop code-blocks to generate an arbitrary number of concurrent iterations. We want to
limit the number of concurrent iterations and to recycle the iteration identifiers. 0

4. The number of concurrent invocations the machine can support is limited. We want to
restrict the breadth of the active portion of the invocation tree so that just enough
parallelism is exposed to saturate the PEs. This allow large programs to execute
effectively on the Tagged Token Dataflow Architecture.

These resource management problems are addressed in the remaining chapters of the thesis., .

Chapter 5 considers a restricted class of programs, comprising acyclic code-blocks without

conditionals. For this class of programs token storage overflow is the most serious hazard. A

powerful technique is developed for determining the worst-case token storage requirements for this

-- " "..-." " " " ". . . . -. -.-.- - . -.. - " " - " - " ii

54 Resource Management Problems § 4.5 0

class of programs. Chapter 6 enlarges the class of programs by introducing conditionals. Again the 6

primary issue is token storage overflow. The introduction of conditionals changes the complexity of

determining token storage requirements dramatically, and we must settle for slightly loose bounds. .- * -.

Chapter 7 enlarges the class of programs further by considering loop code-blocks. The three -

resource management problems boil down to one essential problem: transform loops so that they

have bounded unfolding. For these transformed loops, it is possible to predict the token storage

requirements, recycle iteration identifiers, and control the breadth of the active portion of the

invocation three. Chapter 8 addresses controlling the unfolding of programs in the large.

Before proceeding with the resource management problems outline above, we should note that a

variety of other resource management problems arise in the Tagged Token Dataflow Architecture

which are not addressed in the thesis. One of these is management of data structures. A policy

must be instituted for determined how structures are to be allocated across the machine. There is

potential for exploiting program structure to achieve high locality, but this will require sophisticated

compilation techniques and a mechanism for conveying the results of the static analysis to the

run-time system. There is also a question of avoiding structure store contention. In addition, a

record of the status of the structure store must be maintained. The exact nature of this task depends

to a large extent on the model of structures that is assumed: dynamic heap allocation ala

Dennis [151 or arrays of slots [11]. The Tagged Token Dataflow Architecture supports the array of

slots model. Fairly conventional dynamic memory management techniques suffice to record the

availability of structure storage. There is as of yet no facility for dealing with fragmentation of the

structure store. The allocation policy is still an open problem.

A second important problem is to develop an effective policy for determining where on the

machine code-blocks should be activated. Again, there is potential for exploiting special program

structures. The author has implemented a variety of dynamic load leveling mechanisms which

appear to perform well in practice. The distribution policy is important from a performance point .

of view, but plays a secondary role compared to the resource management problems enumerated

above.

S

0

§ 5.0 Analysis of Acyclic Blocks 55

S

Chapter Five

Analysis of Acyclic Blocks

To open our attack on these resource management problems, we consider programs comprised of

acyclic code-blocks, without conditionals. Later chapters examine broader classes of programs, by

including the other graph schemata. Acyclic blocks without conditionals form a particularly

restricted class of programs. The entire invocation tree can be determined in advance, and all

inputs generate the same tree. Nonetheless, the dynamic behavior of these programs, Le., the

manner in which the invocation tree unfolds over time, is extremely difficult to predict. It depends

un the low-level interactions which influence the execution order, such as network contention,

distribution of work, instruction mix, etc. The primary resource management problem is token

storage overflow. As the tree unfolds, invocations are assigned to domains. If token storage

requirements are not accounted for, a PE may become over-committed and cause the program to

deadlock, even though sufficient resources are available elsewhere in the system. Termination

detection is straight-forward. Tag management is not a problem, because iteration identifiers are .

riot used. Program deadlock is a potential problem, but can be dealt with fairly well in this

restricted setting. Since the invocation tree can be known in advance, the total resource

requirements of the program can be bounded in advance. If this bound is less than the resource

capacity of the system, the program will execute to completion. This approach is rather

conservative, since only a portion of the invocation tree can be active at any time. We should like to

derive a tight bound on the largest subtree (in terms of resource requirements) that may be active in

a legal execution order. -

The token storage overflow problem and the program deadlock problem boil down to a common

question, "Of the space of legal program configurations, what is the worst configuration by some

metric?". Without placing any restrictions on the execution order, beyond those implied by the -

firing rule, we want to determine the worst configuration that may be achieved. The metric may be

the number of tokens on the arcs or the number of concurrent code-block invocations.

. :. ,: : _ :- = = - __- = - .:.-! : :: ~: : . i: -: iii -i . . . : : . ; ! L .

56 Analysis of Acyclic Blocks § 5.0

This chapter develops an algebraic formulation of the concept of a legal configuration in terms of

integer linear constraints on the number of times that adjacent nodes fire. The feasible region of

these constraints corresponds with the space of legal configurations. Thus, the question asked

above can be stated as an integer linear program, which for acyclic graphs without conditionals can

be solved efficiently13.

5.1. Termination Detection

Determining that all activities for a code-block invocation have fired is straight-forward for

acyclic blocks without conditionals. We need only ensure that every node is on a path from the

begin node to the end node. This is a reasonable requirement since dataflow instructions are

enabled by the arrival of input data and have no side-effects. If a node is not on a path from the

begin, it can never fire. If a node is not on a path to the end, it can not affect the result of the

computation 14.

Definition 3: An acyclic code-block without conditionals is well-connected if every
node is on a directed path from the begin node to the end node.

Theorem 4: If is a well-connected acyclic graph without conditionals, the end node is
the last activity in any invocation of .

The proof is immediate. The firing rule implies that all predecessors of a node must fire before

the node fires. In the remainder of the thesis, we assume all acyclic graphs to be well-connected;

auxiliary arcs can always be added to ensure this property15. In the theory that follows, it is

important that graphs be well-connected.

13The approach developed here is closely related to Leiserson's work on retming of VLSI circuits 18, 191. In the
retiming work. a node is given a lead of I when a register is removed from each input arc and a register is added to each
output arc. This is essentially like firing a node in a dataflow program. The worst-case token storage corresponds to a
,Aorst-case retming of a circuit.

14 n practice, instructions with limited side-effects are introduced for special circumstances. These instructions are
required to produce an output as well, so it is possible to determine that they have fired.

15Note that when auxiliary arcs add added to a graph, they introduce an artificial data dependency. The destination
operation is not enabled until data arrives on the auxilliary arc. in addition to the other arcs. The data on the auxilliary arc
is discarded when the operation executes.

- , , S

§ 5.2 Analysis of Acyclic Blocks 57"

5.2. Constraint Systems to Model Program Configurations -.

To motivate the approach, consider an acyclic code-block in execution. Initially, a single token is

available at the input node (i.e., the begin operator). At each step, some number of enabled

activities fire according to the following rules: (i) an operator may fire only if it has tokens available

on all its input arcs, and (ii) upon firing, it removes a token from each input arc and produces one

on each output arc. After the Begin operator fires, the tokens in the graph form a wavefront which

partitions the graph into two components: 'fired' nodes and 'unfired' nodes. Whenever a node

fires, the wavefront advnces and the node moves from the 'unfired' set to the 'fired' set. Note that

there are generally many legal execution orders; these correspond to the different ways the

wavefront can advance. In any legal configuration, the arcs carrying tokens for a cut, which

partitions the graph into two disjoint subsets.

The observations above can be expressed concisely in algebraic terms. Let the nodes of the - -

code-block be represented by the set V = {v0 Vn+ 1 }, where v0 is the Begin node and vn+1 is the

End node. The source node, v0, provides all input tokens. The sink node, vn+ 1, receives all results.

Since graphs are assumed to be well-connected, every node is on a directed path from the source to

the sink. In the initial configuration, v0 has fired once and there is a single token on each of its

output arcs.

Consider an arbitrary legal configuration C of an acyclic code-block. We associate with C afiring 0

function fe: V -, , such thatfC(i) denotes the number of times that vi has fired in a legal execution

order producing C. Note that this is well-defined for acyclic blocks without conditionals, since all

execution orders producing a given configuration generate the same firing function. By definition 0

fC(0) = 1. Since the code-block is acyclic, each node fires at most once; thusfC(i) E {0,1} for all

V E V. Suppose a node vi has predecessors V v..... V. The firing rule implies that a node can
' vii.- ..p"

fire if and only if all its predecessors have fired. Thus, if all of its predecessors fire in an execution

order producing C, then v, may fire or not fire. If any predecessor does not fire, then vi can not fire.

Hence, iffCr) = 1, for r = 1 to p. then fC(i) may be 0 or 1, but if somef(jr) = 0 then fC(i) = 0.

In either case.f(i) <fOr) for r =I to p. This gives the following lemma.

Lemma 5: For any legal configuraion C. the corresponding firing function fe satisfies:

" .i....- . . -.- .. ;: ..-.-. ,..- i..•.-.

58 Analysis of Acyclic Blocks § 5.2 0

fe(j) < MIN {fC(i)" (vi,vj) E E}, for all vj E V. (1)

We say f: V-- Xis a legal firing function if there exists a legal configuration C such that f= f

Lemma 5 yields a set of constraints, one for each edge in E, which are satisfied by any legal firing

function:

f(O) 1 (2)

f(n+1) = 0

f(j)- f(i) < 0, for all (vi,v) E E 0

f(i) integer, for all v E V

The space of functions satisfying (2) includes all legal firing functions. Thus, the optimum of the

feasible region for the constraints in (2) provides an upper bound on the resource requirements of S

legal configurations. Moreover, by demonstrating the converse of Lemma 5, we can show that such

a -hound is tight in that some configuration actually achieves the bound.

Lemma 6: Let 9 = (V, E) be the graph of an acyclic code-block without conditionals
and f: V -- Xa function satisfying (2). Then there exists a unique legal configuration C
of 9such thatfe(i) = f(i), for all vi E V.

Proof: Since every node is on a path from v0 to Vn+ 1, we have 0 < f(i) <1,

for all v in V. f is restricted to be integer, so its range is {0,1}. Consider any
node vi such thatf(i) = 1. Let P be an arbitrary path from v0 to vj. Then, for

all v. on P, we have 1 = f(0) > f(i) > f(i) = 1. Therefore, the set of nodes
which are assigned a value of 1 by f form a connected subgraph which
includes v0. The configuration corresponding tofhas one token on each arc 0

(vi. v.) such thatf(i) = 1 andf(j) = 0. Any topological ordering on the 'fired'

subgraph gives a legal execution order which generates this configuration.i

5.3. Token Storage Requirements of Acyclic Code-blocks S

Since legal firing functions correspond directly with legal configurations, the constraint system in

(2) provides the first step in determining the worst-case token storage requirement over all possible

legal configurations. The set of legal configurations is precisely defined by the space of functions

which satisfy (2). The next step is to determine the number of tokens present in the configuration

corresponding to a given legal firing function.
• -

5.3 Analysis of Acyclic Blocks 59

S

Consider an edge (vi, v.) of a dataflow graph. Every time vi fires, a token is produced on this

Ige. Every time vi fires, a token is removed from this edge. Therefore, the number of tokens on

'i' v) in a configuration C is the difference in the number of firings, fc(i) -fc(j). Thus, the token

orage requirement for the configuration with firing function fis given by

TS (f)= I f(i) -f(j)
(ij) E E

r, equivalently,

TS (f) = I f(i)(Outdegree(vi) - lndegree(vi))
ViEV

herefore, the worst-case token storage requirement over all possible legal configurations is

brained by maximizing TS (f), subject to (2).

Note that the constraintsf(0) = 1 andf(n+ 1) = 0 can be replaced by f(0) -f(n+1) < 1, since

ie cost function is unaffected if all the f(i) are scaled by a constant factor. Let ci denote the

uantity Outdegree(v) - Indegree(vi). Linear program 7, below, gives the token-storage

,quireme,t of an acclic block 9 = (V,E) without conditionals,

Linear program 7: Token Storage Requirement of Acyclic Code-Block 9 = (V,E)

Maximize X cf(i), subject to

f(j) -f(i) < 0, for each (vi, v.) E,

f()-f(n+ 1) < 1,and

f(i) integer, for all vi E V.

Linear program 7 is the dual of a min-cost flow problem [13]. Since polynomial time algorithms

Kist to solve min-cost flow problem [20], this linear program can be solved in polynomial time.

More generally, the constraint matrix in the integer linear program derived for an acyclic block

ithout conditionals is totally unimodular1 6. This allows the integrality constraint to be ignored, •

ecause for a linear program with a totally unimodular constraint matrix and integral right-hand

de, every basic feasible solution is integral. We call the linear program obtained from an integer

A matrix is totally unimodular if every non-singular submatrix has determinate I or -1. Sufficient conditions for total

iimodularity can be found in [201, page 317.

. - ..

.5 Analysis of Conditional Blocks 73 0

.Approximate Bounds 0

;ince determining tight bounds on blocks with conditionals is inherently complex, we should

estigate how good bounds can be derived for the graphs encountered in practice. Two rather

reme approaches suggest themselves. (1) Given an integer linear program for an acyclic code- '

ck with conditionals, the solution to the relaxed linear program offers an upper bound on the

rage requirements. This relaxed program can be solved efficiently. The quality of the bound for

iven code-block depends on the particular structure of the code-block. (2) Tight bounds can be

"ived by brute force. Given a code-block with k conditionals, eliminate one conditional by

mulating two sub-problems, one assuming the 'true' side is enabled and one assuming the 'false'

e. Solve both recursively. This provides a tight bound for any code-block, but unfortunately the

ining time is exponential in the number of conditionals.

-hese two approaches can be combined to give a successive refinement approach, employing

inch-and-bound techniques. Formulate and solve the relaxed program to get an initial upper

and. If the solution is integral, stop; the bound is tight. This initial bound is an upper bound or!

storage requirements, regardless of which way the conditionals fire. The bound can be 0

cessively improved by further constraining the problem. Choose a conditional which is partially

ermined (Le, for which both arms are partially fired). Generate two sub-problems by forcing

arm not to fire and then forcing the other. This can be accomplished by adding constraints of

form f(t0) = 0, and then f(f) = 0. Note, however, that this new system of constraints can be

iplified, eliminating the constraints from the sub-block which was forced not to fire and putting

constraints for the switch and merge into the usual, simple form. The solutions to these two new

blems represent improved bounds on the storage requirements of the block, with an assumption

)ut how a particular conditional fires. The maximum of the two (both are guaranteed to be no

zer than the bound given by the parent problem) can be taken as a bound on the storage

uirement of the code-block.

-his process can be continued, generating a tree of sub-problems. At any point, the maximum

Le at the leaves represents the best approximation of the worst-case storage requirement. The

)ortant point is that the entire tree need not be developed. At any point, the process may be

ninated and the partial tree offers an upper bound on the storage requirement. As the tree is

72 Analysis of Conditional Blocks § 6.4 -

conditionals in sequence, each k inputs wide (cf. Figure 6-2). The data inputs
denote the clauses. The control inputs denote the variables. If xi appears in

C., the true side of the corresponding conditional is given a sub-block with a

cut of two: otherwise, it is given a cut of one. Similarly, the false side has a cut
of two, if xi appears complemented in C., and one, otherwise. In any legal

configuration, each C path will contain one or two tokens, and if there are two 0

they must be in the same sub-block. p is satisfiable if and only if the graph
has a maximum storage requirement of 2k. 0

C1 C2

switch switch F x

switch switch X
T F T•-

"A

tS

Figure 6-2: Graph for (X1) A (-'X 1 V X2 V iX2) ii

0 - ,'

0 -

6.3 Analysis of Conditional Blocks 71

acyclic blocks without conditionals is totally unimodular. As a result, the integrality constraint can

be ignored, and the relaxed linear program solved using standard techniques. Unfortunately, the

constraint systems for acyclic blocks with conditionals do not exhibit this simple structure. A

sufficient condition for total unimodularity is that a 1 and a -1 appear in every row, as the only

nonzero entries. The constraint matrix derived for conditionals does not have this property, S

because the switch and merge introduce rows with three non-zero entries.

Of course, failing to meet this sufficient condition does not prove that the relaxed linear program

for an acyclic block with conditionals will fail to have an integer optimal solution. However, the

result proved in the next section essentially proves this to be so. The optimal solution of the relaxed

linear program gives an upper bound on the storage requirements. If the optimal solution for a

given program happens to be integral, the bound is tight since the optimal solution represents a

legal firing function. The relaxed linear program can be solved in polynomial time. Thus, if for

every acyclic blocks with conditionals, the relaxed linear program has an optimal integer solution,

tight bounds for acyclic blocks with conditionals can be determined in polynomial time. However,

the next result shows that determining tight bounds for such graphs is NP-complete.

6.4. NP-Completeness of Tight Storage Bounds

The problem of finding a tight upper-bound on the maximal storage requirements of an acyclic

block with conditionals is NP-complete.

Definition 9: Let MAXCOND = { (9, k> 9 is an acyclic code-block with conditionals
which has a storage requirement of at least k on some legal execution sequence. }

Theorem 10: MAXCOND is NP-complete.

Proof: The proof is a reduction from satisfiability of boolean formulas in
conjunctive normal form (SAT). MAXCOND is in NP because we can guess
the arcs which contain tokens in the worst case and verify this (i) includes k 5

arcs, and (ii) is a legal configuration. To check that the configuration is legal,
guess the setting of the control variables and simulate the execution, without
allowing any tokens to be removed from the chosen arcs.

For the completeness, suppose q) is an instance of SAT with clauses
<C1. Ck> and variables x1, xn. Construct an acyclic graph with n

--. . - . . . -......... -.......•-'

70 Analysis of Conditional Blocks § 6.3

6.3. Constraint Model for Conditionals

The approach employed in Chapter 5 can be extended to model the execution of conditional

blocks. New kinds of constraints must be introduced to capture the special behavior of the switch

and merge operators. A switch consumes a token from each of its input arcs, but produces a token

only on one or the other of its output arcs. Suppose switch sj provides input to tj and f, then

f/(t) + f(f. <f(s).
j J- J

No special treatment is required for the input arcs17.

A merge fires whenever a token is present on either input arc. It consumes a token from only one

input arc, and produces a token on each output arc. Suppose merge mi receives input from t'i and

fi, then

f(m i) <f(t'i) + f(f i).

No special treatment is required for the output arcs.

Additional constraints are required to capture the fact that all the switches route data to the same

sub-block. Thus, if the input nodes of the 'true' sub-block are t1,.... tk, and the input nodes of the 5

'false' sub-block are fl,... Afk we have

f(ti) + f(f.)< 1, for all ij = to k.

This ensures that only one side of the conditional executes. S

The tokens on the outputs of a switch must be accounted for collectively in the objective

function; the number of tokens on the outputs of switch si is given byf(si) -f(t) -f(f1). The tokens

on the inputs to a merge are given byf(mi) -f(ti) -Nf(fi).

The constraint system generated in this manner gives an integer linear program whose optimal

solution is a tight bound on the token storage requirements of an acyclic code-block with

conditionals. This is only a first step, because in general integer linear programming is NP-

complete. To be practical, an efficient technique must be developed for the particular class of

integer linear program at hand. In Chapter 5 we noted that the constraint matrix generated for

171

17 We assume that switch operators have a single 'true' output arc and a single 'false' output arc. This makes the
presentation much simpler, but is not necessary in practice.

°S.. .

- ~ ~ ~~. • - - m

§ 6.2 Analysis of Conditional Blocks 69 '

of the region of large fan-in and enable the right-hand switch, before tokens can enter the region of

large fan-out. The two sub-blocks have equal storage requirements in isolation, but either could be . -

made to have arbitrarily large storage requirements without changing the essential dependencies.

Note that for conditionals with a single input and a single output, it is valid to replace the

conditional with a single arc, weighted by storage requirements of the worst sub-block. 0

switch switch re
F T F .S

.0

Figure 6-1: Sub-Block Replacement Counter Example

This example also demonstrates that is it not valid to ignore the special behavior of the switch and

merge and pretend that both sub-blocks receive tokens. The merge would have to be treated as a

strict operator (Le, requiring tokens on all its input arcs), and this would prohibit the large fan-in

and large fan-out from both participating in the worst-case storage requirement.

•4-

68 Analysis of Conditional Blocks § 6.1 -

sub-block of a conditional may not require all the inputs. In this circumstance, it is difficult to

determine whether the switch has fired.

We say a conditional is well-connected if (1) every switch is on a path to a merge under either

setting of the conditional, and (2) every node in the conditional is on a path from a switch to a merge 0

Note, a switch need not be connect to the same merge under both settings of the conditional.

Theorem 4 holds for well-connected conditionals. In order for all the merges to fire, the entire

conditional must be complete. No tokens remain in either sub-block. There are no more activities

to fire. For any well-connected acyclic graph of well-behaved operators and well-connected

conditionals, the end node is the last activity. We assume, in the remainder of the thesis, that all

conditionals are well-connected. Auxiliary arcs can be added so this condition is met.

Note, well-connectedness does not imply that a given code-block invocation will terminate. It

only implies that when an invocation does terminate, the event can be detected.

6.2. Naive Approaches to Token Storage Analysis 0

The basic conditional schema was discussed in Chapter 2. One might hope to analyze the two

sub-blocks of the conditional in isolation and replace the entire conditional with a simpler structure

which would provide the same worst case. This approach worked well with subordinate code-block

invocations in Chapter 5. Unfortunately, it fails for conditionals. The essential factor is the

strictness of the block being analyzed. Code-blocks are strict; they do not execute until all their

inputs are available and do not complete until all their results are produced. This property is

enforced by the restriction that a single argument token initiates an invocation and a single result is _0

produccd. The sub-blocks within a conditional are not strict. Thus, their internal structure plays an

important role.

As an example, consider the graph in Figure 6-1. It has a large fan-in above the righthand switch 0

and a large fan-out below the righthand merge. A 'false' setting (shown as bold arcs) allows both .

the large fan-in and the large fan-out to contribute to the token storage requirement. Tokens can

patss through the left-hand switch and enter the large fan out below the right-hand merge, even if

tokens for the right-hand switch get stuck in the area of large fan-in. A 'true' setting does not allow

the fan-in and fan-out to both contribute to the token storage requirement. Tokens must drain out

......................

§ 6.0 Analysis of Conditional Blocks 67

Chapter Six

Analysis of Conditional Blocks

As a second step in addressing the resource management problems, we consider acyclic blocks S

with conditionals. The introduction of conditionals changes the complexity of program analysis

dramatically. With code-block invocation and conditional expressions, the model is fully general,

i.e, we can express all computable functions as dataflow programs of this form. Determining the

resource requirements for entire programs is equivalent to solving the classic halting problem, since

for acyclic graphs bounded resource requirements imply termination. Thus, we can not hope to

eALend all the results in Chapter 5 to handle this more general class of programs. The results

concerning entire programs hold only if recursion is excluded. The results concerning individual

code-block invocations hold, but are more difficult to compute. A weak upper bound on the token

storage requirement of an acyclic block with conditionals is the number of arcs in the graph. The

question is how tight a bound can we achieve with reasonable effort. Determining absolutely tight

bounds proves to be quite difficult. We can not easily eliminate conditionals to reduce the problem

to the case handled in Chapter 5. We can derive a constraint system to model the special behavior

of conditionals, but unfortunately these constraints do not exhibit the special form that was

exploited in Chapter 5. Indeed, we can not hope to solve the resulting integer linear programs

efficiently in all cases, because we can show that determining tight bounds is NP-complete. Thus,

we are faced with developing algorithms which give good bounds for the programs encountered in

practice. A simple branch-and-bound technique provides such an algorithm.

6.1. Termination Detection

Determining when all activities for an invocation have completed is complicated by the presence

on conditionals. We must guarantee that the end node is the last to fire, under any setting of the

conditionals. It is reasonab, for a switch to have no output arc on one side or the other, since a

• . . - . • . = . = = - -•- . . i •0

66 Analysis of Acyclic Blocks § 6.0 -.

0

0

0

0

0

,*0

0

0

~0

0

. . . .

§ 5.7 Analysis of Acyclic Blocks 65

5.7. Summary -

This chapter has made significant contributions towards solving our resource management

problems for a restricted class of programs. Let us review the contributions so far.

1. Termination Detection: Solved. By adding arcs so that every node is on a path from the
begin to the end, the firing of the end signifies the termination of an invocation. This
does not say a priori whether a program will or will not terminate, but whenever a
code-block invocation terminates the resource manager will be informed.

2. Token Storage Overflow: Solved. A linear programming technique can be used to
determine the worst-case token storage requirement of a code-block activation. This 0
allows the resource manager to avoid over-committing any token storage unit. This
does not imply the program will run to completion, but it will not halt because of token
storage overflow.

3. Iteration Overflow: Non-issue with acyclic code-blocks.

4. Program Deadlock: Partially addressed. The linear program technique can be extended
to determine the worst-case resource requirements of overall programs, for this
restricted class. For a given program, if the resource bound derived in this way is less
than the capacity of the machine, the program will execute to completion. If the 0
resource bound exceeds the capacity of the machine, the program may or may not
execute to completion, depending on the execution order that is pursued. We have no
addressed how to bias the execution order to reduce the resource requirements, but we
will return to this topic.

The major stumbling block in analyzing acyclic graphs without conditionals is the indeterminacy

in the execution order. We are forced to consider all possible execution orders, since the particular

order that will be followed by a specific machine is impossible to predict. This stumbling block is

overcome by representing the space of legal configurations as a system of integer linear constraints.

This chapter demonstrates the power of this approach through a variety of applications involving

token storage, CBR, and constant area requirements.

.i .

"S

12 . . i .: i- '- 2 . i i12 1 " " ." i~ l i~ i: 2,; .2 21. i~i S

64 Analysis of Acyclic Blocks § 5.6 -
0

used as the weights on edges where these code-blocks are invoked. The requirements of a code- .

block can be determined as soon as all its immediate subordinate blocks are determined. Note that

even though a given code-block may appear many times in the overall tree, it need be solved only

once. The algorithm is given below.

Algorithm 8: Token Storage Requirement of an Entire Program

Input. Program Tcomprised of acyclic code-blocks without conditionals, C1, C1.

Output. Worst-case token storage requirement of .

Mr'!hod

1. Construct a directed graph 3 of invocation relationships: (Ci, C) E 3 if Ci invokes
C.. If 5 has a cycle, stop; the program is recursive and can not terminate.

2. Construct a topological ordering 0 = i. Cjk such that C precedes C in 0 if

there is a path from Ci to C. in J.

3. Solve the edge-weighted token storage linear program for each code-block in the
order given by 0, using the results of C1,.... Ci 1 as weights in the program for Ci.
Return the result for the top-level code-block Ck.

Algorithm 8 can be applied to determine the worst-case CBR requirement of such a program as

well. Edges between apply and an apply"1 operation should be weighted by the CBR requirement of

the subtree generated by the apply. All other edges receive a weight of zero. The CBR requirement

of the subtree rooted at a given code-block is 1 plus the result of the edge-weighted linear program.

Constant area requirements can be determined in a similar fashion. Edges between apply and an

apply "! operation should be weighted by the constant area requirement of the subtree generated by

the apply. All other edges receive a weight of zero. The constant area requirement of the subtree

rooted at a given code-block is the constant area size for that code-block plus the result of the

edge-weighted linear program. •

-- -..-.

§ 5.4 Analysis of Acyclic Blocks 63

Thus, for each code-block we solve two linear programs, one for each form of token. -

5.5. Token Storage on Individual PEs

In the Tagged Token Dataflow Architecture, when an acyclic code-block is invoked it is spread

over the PEs in a domain. Each PE provides storage for certain tokens generated during the course S

of the invocation. Suppose a code-block with a token storage requirement of t tokens is spread over

a collection of PEs, what is the worst-case token storage requirement experienced by an individual

PE? It may be as large as t tokens. However, usually the worst-case requirement for an individual

PE will be much less than t. A PE must provide storage only for tokens on arcs which provide input

to instructions it contains. Given a partition on the code-block, we want to determine the worst-

case token storage for each PE. The edge-weighting techniques introduced above can be employed

to handle this situation.

Let V = (V1. ... V1) be a partition on a code-block into I components. The cost function for

partition Vm is given by (3), where

0, if V.-V
i m

i 1, ifvjEV m

5.6. Resource Requirements of Entire Acyclic Programs

The edge-weighting technique can also be applied to determine the worst-case token storage,

CBR, or constant area requirement of an entire invocation tree. Suppose code-block 9 invokes

code-block Q and the worst-case token storage requirement of the suotree rooted at 0 is 0

T. Consider the apply schema in the graph of 9 where 0 is invoked. A single token on the arc

between the apply and apply-' stands for as many as T tokens in the subtree initiated by this

invocation. Therefore, in determining the worst-case token storage requirements for the entire

subtree rooted at 9, a cost of Tshould be associated with a single token on this edge.

The worst-case token storage requirements of a tree of non-recursive applications can be

determined by working up from the leaves. The code-blocks which appear as leaves can be solved

by the basic method (i.e, all edge weights are unity). The resulting token storage requirements are

- - . ~ ~ ~ ~ ~ ~ ~ ~ -.- ' -- - - - -- - - - -- - - - -- - - - -- - .-.

62 Analysis of Acyclic Blocks § 5.3

token storage requirements, in the acyclic case. However, determining the max cut of a graph is

NP-complete, in general [16). The key observation is that legal configurations correspond to a

restricted class of cuts, directed cuts, which have the property that edges only cross the cut is one

direction. In graph theoretic terms, the result above demonstrates that the maximal directed cut of

an acyclic graph can be determined in polynomial time. Directed cuts are less interesting in cyclic 0

graphs, because no cycle can cross a directed cut. The generalization employed in network flow

problems considers only the edges which cross the cut in the forward direction. However, this

generalization is of little value for the restricted class of cyclic graphs permitted in dataflow

programs; thus we do not pursue it further.

5.4. Extensions for Multiple Token Stores

In Chapter 3 we suggested that the Tagged Token Dataflow Architecture should be augmented to .

include (i) a token buffer in the input section for tokens which do not require partners, and (ii) a

,facility for buffering matched pairs within the wiating matching section. With this change to the

machine, there are really two forms of tokens. The load on the two token stores should be -

accounted for separately.

To extend the basic technique to handle this situation, weights are associated with the edges. To

compute the load on the waiting-matching store, we assign a weight of 1 to the input arcs of dyadic

operations and a weight of 0 to the rest. To compute the load on the input section token buffer,

inputs to monadic operations are assigned a weight of 1 and the rest 0.

Let 9 = (V,E,W) be an acyclic code-block with token weights associated with the edges. Thus, w..

is the maximum number of tokens implied by a token on edge (vi, vj). The cost of a legal firing 5

function fis given by:

WTS (f(i) -f(j)).w.ij (3)
(ij) EE

or, equivalently,

WTS(f) = - f(i)-(Outweight(vi) - Inweight(vi)),v.EV

where Outweight(v) and Inweight(v) are the sum of the weights on arcs emanating from and
incident to node v. respectively.

--..• . .

-

§ 5.3 Analysis of Acyclic Blocks 61

nodes f f(0) I f(l) f f(2) f f(3)
costs I 2 I 1 I -1 I -2

edge e, -1 1 0

e31-1 0
e4- 11 0

e5 -111 0
E6 - 1

Figure 5-2: Example Tableau for Token-Storage Requirement

U

00

V:0

Figure 5-3: Fxamiple Min-Cost Flow Problem

It should bc noted that the restrictions implied h,. the datatlov,, firing rules are crucial to the

* approach presented here. A legal configuration determines a Cut which separates v0 and vn+

Thus the flla\ifllufl cut of the corresponding undircered graph h certain)) an upper bound on the

60 Analysis of Acyclic Blocks § 5.3

linear program by dropping the integrality constraint the relaxed linear program. For acyclic blocks

without conditionals, it is sufficient to solve the relaxed linear program, since an optimal solution is

t- integral. The relaxed linear program can be solved by standard methods, eg., simplex method or

network simplex method, or in polynomial time using the Ellipsoid algorithm.

As a simple example of this technique, consider the graph in Figure 5-1. The linear program

tableau for this graph is given in Figure 5-2. The constraint matrix is simply the incidence matrix

for the graph with an additional edge from vn+ 1 to v0, except the signs are reversed. The optimal

ii solution has a cost of 3 with f0 = l1 and f2 = f3 = 0.

•T

V:
3

Figure 5-1: Basic Acyclic Block
* 0

It was noted above that Linear Program 7 is the dual of a min-cost flow problem. The dual

problem has a very simple structure, so it is likely that a fast algorithm could be specially tailored

for it. The edges in 9have cost zero and the auxiliary edge from vn+1 to v0 has cost 1. The supply

at node vi is equal to indegree(v) - outdegree(v), in the origioal graph. The objective is to

minimize the flow along the auxiliary arc. The network c,,-esponding to the example above is

shown in Figure 5-3

* -0 - . . . - . - . . + . - - -

74 Analysis of Conditional Blocks § 6.5

extended the bound is improved. Note that the value determined for a particular sub-problem is

always as large as the values determined for either of its children. Thus, a branch-and-bound

approach can be employed to avoid expanding parts of the tree. A node can be eliminated if the

value determined at some other leaf node (of the partial tree) is greater. The algorithm is given

below. 0

Algorithm 11: Token Storage for Acyclic Blocks with Conditionals

Input. Acyclic code-block 9with conditionals.

Output. Approximate token storage requirement of .

Method

1. Generate and solve the relaxed linear program for 9.

2. Repeat until either an integral solution is obtained or some prespecified number
of refinements have been attempted.

a. Select the leaf node v of the partial solution tree with the greatest value.

b. If v has an integral optimal solution, stop: no other setting of the
conditionals can generate a larger value and there exists a legal execution
which meets the stated bound.

c. Otherwise, expand v by forcing a partially determined conditional and
simplifying the constraint matrix. Solve both subproblems.

Using this branch-and-bound technique, we can solve (to a reasonable approximation) the

various constraint systems developed in Chapter 5. Weighting the edges in the graph simply

changes the coefficients in the objective function. Algorithm 11 can still be employed. The

resource requir'nents of entire programs can only be determined if recursion is excluded.

*o 6.6. Summary

We have now extended our treatmer, of the resource management problems to include a fully

general class of programs. Let us recapitulate the contributions so far.

1. Termination Detection: Solved. By adding arcs to graphs, it is possible to guarantee that
the firing of the endnode always signifies termination of a code-block invocation.

*'. .,

§ 6.6 Analysis of Conditional Blocks 75 -

2. Token Storage Overflow: Solved, but conservatively. By employing the linear
programming techniques in a successive refinement algorithm we can generate a
reasonably tight bound on the token storage requirements of individual code-block
invocations. Reserving this much storage to an invocation will guarantee that overflow
is avoided, but may be slightly wasteful, since it is possible that no legal configuration .

actually achieves the bound.

3. Iteration Overflow: Non-issue with acyclic graphs.

4. Program Deadlock: Not addressed. The results in Chapter 5 break down in the face of

b recursion, because we can not determine in general whether a program terminates. We
can not determine the depth of a branch of the invocation tree, a priori, thus we can not
determine whether a program will exhaust the machine resources before completing.

Acyclic graphs with conditionals present two problems: indeterminacy in the execution order,

and data dependent behavior. The former can be addressed with constraint system techniques, but

the latter makes many problems that can be solved efficiently without conditionals NP-complete,

when conditionals are included. For most dataflow programs encountered in practice, the

complexity can be largely overcome by a method of successive refinement.

. - - . oS

0i? :

•*" ° --

76 Analysis of Condidonal Blocks § 7.0

L

hi S

S S

S

S

S S

* 9

S S

5 5

.

§ 7.0 Analysis and Control of Loops 77

Chapter Seven

Analysis and Control of Loops

The resource management problems are particularly serious when loop code-blocks are involved.

The token storage requirement of a loop may be extremely large and dynamic, since it depends on

the number of iterations executing concurrently. Iteration identifiers should be recycled

automatically as a loop progresses. Loop code-blocks may generate many subordinate invocations,

causing the active portion of the invocation tree to grow very broad. Rapidly spawning off many S

large, independent computations makes program deadlock a likely occurrence. The latter three

resource management problems are closely related; they boil down to a single issue: how to control

the unfolding of loops so the number of concurrent iterations can be bounded.

We begin our study of loops by extending the constraint technique to model the execution of

loop code-blocks. The problems encountered with switch and merge nodes in Chapter 6 can be

overcome rather easily. The resulting linear program can be solved efficiently, but may not have a

bounded optimal solution. This suggests an important classification of loops: some loops have

bounded resource requirements, others do not. This classification is essential, for a loop has

bounded resource requirements if and only if it has bounded unfolding, Le, if it can generate at

most a bounded number of concurrent iterations. A structural characterization can be given for the

two classes of loops: a loop has bounded resource requirements (and bounded unfolding) if and

only if the loop body forms a single, strongly connected component. This structural charaterization

suggests how unbounded loops can be transformed into bounded loops with the addition of

minimal number of dependency arcs. These transformed loops exhibit controlled unfolding. In •

fact, the maximum unfolding can be adjusted dynamically. They have precisely the properties we

desire from a resource management viewpoint. Tokens storage requirements can be determined in

advance. A fixed collection of iteration numbers can will be recycled automatically. The number of

concurrent subordinate invocations can be controlled.

.,,S ?

78 Analysis and Control of Loops § 7.1

7.1. Termination Detection

Determining when loop code-block invocations are complete is somewhat more subtle than for

acyclic code-blocks. We must guarantee that all iterations have completed. To this end, the

approach adopted in the preceding chapters can be extended to ensure that the end node fires only

when the invocation is complete.

We say a loop code-block is well-connected if:

1. all conditionals it contains are well-connected,

2. all nodes in the header are on a path from the begin node to a merge,

3. all nodes in the cyclic portion are on a path from a merge to a D operator,

4. the 'true' output of every switch is on a path to a D operator,

5. the 'false' output of every switch is connected to a D-1 operator, and

6. all nodes in the trailer are on a path from a D-1 operator to the end node.

Condition 1 is necessary to ensure that the header, body, predicate, and trailer behave as well-

connected acyclic blocks. Condition 2 ensures that if every merge has received an input, the header

has competed. Conditions 3 and 4 ensure that if every D operator has received a token for iteration

i, then iteration i has completed. By induction, all iterations previous to i have completed as well. s
Condition 5 ensures that if every D-1 operator has received input, then all iteration of the loop are

complete. Finally, condition 6 ensures that the invocation is complete when the end node fires.

7.2. Constraint Model of Loop Configurations a

The basic loop schema is shown in Figure 2-6, in Chapter 2. Recall, the header, body, and trailer

are acyclic blocks. The outputs of the header form the initial inputs to the merges. Tokens circulate .

through the loop body until the loop predicate turns false. The final wave of tokens is routed to the

trailer block. Every cycle in the graph is broken by exactly one op(merge), one switch operator, and

one D operator, For the purposes of this discussion, the deterministic merge will be regarded as a - i"x"--

true operator, even though it can be implemented by allowing two arcs to converge on the same

port. In developing the theory for analyzing loops we will assume that no conditional expressions

i.0 .

§ 7.2 Analysis and Control of Loops 79

appear within the loop. Toward the end of the chapter we will address the complications

introduced by conditionals.

Since we are excluding conditionals within the loop, all operators appearing in a cyclic portion are

well-behaved, except the switches and merges that guide circulating values through the loop body,

and hence obey the standard firing rule: when a node fires, a token is consumed from every input

arc and one is produced on every output arc. This rule implies that for any legal configuration C,

fe(i) > fC(), if there is an arc from vi to vj. Note that this constraint holds regardless of how many

iterations are performed, since every time vj fires it must consume a token produced by vi. S

Therefore, the usual form of constraint holds for any arc between well-behaved operators.

The switch and merge nodes do not obey this rule; they must be treated specially as in conditional

blocks. Again, the constraints hold regardless of the number of iterations. The special constraints

which force all the switches to fire the same way are not required for loops. The role of the switch

operator in the loop schema is somewhat restricted, because at most one wave of tokens can be

routed to the trailer. Thus, if switch si is connected to fi. on the 'false' side, the constraint f <(fi) < 1 . .

should be included.

Given a loop code-block without conditionals, the set of constraints generated in the manner

described above are satisfied in any legal configuration. The analog of Lemma 5.2 holds for loops;

any function which satisfies such a set of constraints is the firing function for a legal configuration.

However, unlike acyclic blocks, the legal configuration for a given firing function is not unique.

Many distinct legal configurations may give rise to the same firing function, since tokens are

allowed to become reordered (Le., the activity for the i+ 1th iteration of an operator may complete

before the activity for the ith iteration). However, the exact values and iteration numbers carried on

tokens do not affect the token storage requirements, only the number of tokens on the arcs; thus, all

legal configurations for a particular firing function are equivalent in regard to the token storage " -'7

requirement. The integer linear program for a loop code-block derived from the firing constraints -

defines the space of all distinct legal configurations of the code-block, with no restriction on the

number of iterations that the loop performs.

In dealing with acyclic code-blocks without conditionals, the integrality constraint can be relaxed,

with no effect on the optimal solution. The relaxed linear program can be solved with conventional

. ,.•...•-

80 Analysis and Control of Loops § 7.2

techniques. This simplification is possible because the constraint matrix is totally unimodular; each

row of the constraint matrix contains one +1 entry, one -1 entry, and the rest 0. The constraint -

matrix derived for a loop code-block does not have this property; some rows have three non-zero - -

entries. For loops, the relaxed linear program provides an upper bound on the token storage

requirements, but this bound is not necessarily tight. If the optimal solution to the relaxed problem 0

happens to be integral, the bound is tight, however. For a given loop code-block, the extent to

which the optimal solution to the relaxed problem differs from the optimal integer solution

depends on the particular structure of the graph.

A simpler constraint system can be generated by treating the header, body, and trailer

independently. The graph is partitioned into three subgraphs and assumed to have initial

conditions as indicated by Figure 7-1. The maximum cut in the header contributes to the token-

stora ge bound, and yet the cyclic portion is treated as if all its inputs were provided. A similar

situation holds for the trailer. The merge and switch operators behave as identity operators. The

worst case storage requirements of the three blocks can be determined independently and summed

to get a boun.d on the overall token storage requirements. This bound is slightly loose; it exceeds S

the actual worst-case storage requirements by a constant factor, not greater than the sum of the

requirements of the header and the trailer. However, the simplified constraint systems are totally

unimodular, and hence can be solved by conventional methods.

The linear programs for the header and trailer are exactly as in Chapters 5 and 6. The linear

program for the cyclic portion is similar, but no auxiliary arc is introduced. The merges act as

sources and the D operators act as sinks. These are paired by the feedback arcs. A single token is

assumed to be present on each of these feedback arcs in the initial configuration. In the remainder

of the thesis, we ignore the header and trailer portion of loops, focusing on the cyclic portion.

Each D-Merge pair is associated with a loop variable, so let the D and Merge for the i loop

variable be denoted by Di and Mi, respectively. The constraint for the edge (Di,Mi) is given by S

f(M.) <f(Di) + 1.

The number of tokens on arc (Di, Mi) isf(Di) -f(Mi) + 1, since one arrives from the header. The

token storage requirement of the body portion of a code-block are given by the linear program S

below.

.S 7','

ta ,',,'h':=a"d".-am~ln
"

ia~
,. =

. " " : " "-. , . . . "m

§ 7.2 Analysis and Control of Loops 81

D b D
heade bloc

trailer block

swthwitch switch

F T F T F

loop body

DD D

Figure 7-1: Loop Broken Down for Analysis -

82 Analysis and Control of Loops § 7.2

Linear program 12: Token Storage for Loop Code-blocks.

Maximize N + I cif(i), subject to

f(v) -f(u) <0, for all (u,v) C E, v not a merge,

f(v)- f(u) < 1, for all (u,v) E E, v a merge,

where N is the number of merge nodes.

7.3. Bounded and Unbounded Loops

The constraint system above models the legal configurations of a loop, with no restriction on the

number of iterations the loop is permitted to execute. Thus, the space of distinct legal

configurations defined by these constraints allows for any number of iterations. If the linear

program for a loop has an optimal solution, the loop operates within bounded storage requirements,

regardless of the number of iterations it performs. In general, this will not be the case. Consider

the summation example discussed in Chapter 2. The body portion of the loop is reproduced in

Figure 7-2. The index value (I) may circulate through an arbitrary number of iterations without the

switch for the SUM variable firing even once. Tokens simply accrue on the arcs emanating from the

cycle of the index variable. This situation arises because one variable (I) depends only on itself,

while the other (SUM) depends on both loop variables. The loop body shown in Figure 7-3

exhibits more controlled behavior. All loop variables are dependent on all other loop variables.

Thus, no particular variable can get arbitrarily ahead of the others and cause tokens to pile up.

These two examples typify the two basic classes of loop code-blocks: resource unbounded and

resource bounded. The class to which a particular loop belongs is entirely determined by the

structural properties alluded to in these examples. These ideas are formalized below.

Resource requirements and loop unfolding

The classification of loops can be defined in terms of resource requirements, such as token 5

storage, or in terms behavioral aspects, such as the number of concurrent iterations. The two

definitions are equivalent

S'2- -

.S - "''

§ 7.3 Analysis and Control of Loops 83

T F

+S

+S

S

D "D

Figure 7-2: Loop Body for Summation

Definition 13: A loop code-block L. is storage bounded if every legal execution of L
requires at most a bounded amount of token storage, independent of the total number of
iterations; otherwise it is storage unbounded

A loop code-block L has bounded unfolding if in every legal execution of L a bounded
number of iterations are active concurrently; otherwise it has unbounded unfolding.

Theorem 14: A loop code-block L is storage bounded if and only if it has bounded
unfolding.

Proof: () Suppose every legal execution of L allows at most k concurrent
iterations. Let I be such that at any ime there are at most / tokens belonging
to a given iteration. (The number of arcs suffices for 1.) Therefore. there can
be at most 1k tokens in existence at any time, regardless of the number of
iterations executed in total.

.
k

• • ,_ - ,. ..

84 Analysis and Control of Loops § 7.3

+• +

D D:

Figure 7-3: A Resource Bounded Loop ..

()Suppose that in every legal execution of L no more than k tokens are in..-I
existence concurrently. Consider first the case where no apply schema ":

appears within die loop. At most k iterations can be in execution
concurrently. since at least one token must exist for each active iteration. The
apply schema introduces a difficulty because the argument token disappears
from the activation and is later replaced by a result token; it is possible that no-
token exists for an active iteration. Suppose that more than k iterations can be
active concurrently. Then all but k of the active iterations must be
represented only by subordinate invocations. The firing rule allows all these • -"

subordinate invocations to complete (supplying result tokens) before any new -i:2- -
activities within L fire. In this case, more than k tokens will exists within the .)?

invocation, contrary to our assumption.03 -:

This result links together the major resource management problems. If a loop has bounded ~ i)-.•"

-S ." .

S:::

- -

• -. - . , ,. i., ,, ,., i~ - . .. , - .. i • ' - o v , , .: ,- . : .i, _ i ,: ' ,- .

7.3 Analysis and Control of Loops 85

ifolding then: (1) it can execute within a fixed supply of iteration numbers, (2) the worst-case

,ken storage requirements can be determined in advance, and (3) the branching of the active

jrtion of the invocation tree can be bounded. The first two facts provide direct solutions to token

orage and iteration overflow. The latter fact reduces the likelihood of program deadlock. Thus,

e should examine how the unfolding of loops can be controlled,

Bounding the number of concurrent iterations only partially solves the iteration overflow

-oblem. There must be an efficient mechanism for recycling iteration identifiers. Ideally, if a D

)erator receives a token with iteration identifier t, it should produce a token with iteration 0

entifier ' = t+1 MOD k, for some k, and be guaranteed that all previous uses of 1' have

rminated.

The remainder of the chapter examines bounded and unbounded loops more thoroughly and

,monstrates that iteration identifiers can indeed be assigned in the modulo fashion suggested

)ove. In presenting the theory we have need for describing the behavior of programs under the

-interpreter. Thus, when we refer to iteration I of node v, we mean the instance of v that would

Lrry iteration I under the U-interpreter. Once we establish that a certain class of loops make use of

fixed size interval of iteration numbers, it will be clear that the iteration number can be safely

placed by fixed sized iteration identifiers, assigned in modulo fashion.

:ructural classification of loops

Under what conditions can a loop code-block potentially unfold into an arbitrarily large number

concurrent iterations? The two example loops above suggest the answer; a loop has bounded

ifolding if all loop variables are mutually dependent. Stated somewhat differently, a loop has 0

)unded unfolding if the the body portion form a single strongly connected component [1].

Definition 15: A node vj is k-dependent on v, if there exists a path from vi to v. which
contains k D operators, including vi, but not vj. S

We say v. is directly dependent on vi, if v. is 0-dependent on vi.

We say v. is dependent on v,, if it is k-dependent for some k.

Lemma 16: If v. is k-dependent on v,, then iteration n-k of vi must fire before iteration

n of v. can fire, for n > k.
•J- . .

" " " - , . . . - - - . - ." , , - . - '.' '. .S

.6 Analysis and Control of Loops § 7.3

Proof: The result follows directly from the firing rule, with induction on the
length of the path. Informally, the token produced by iteration n-k of v.
generates a sequence of tokens which traverse the k-dependency path,
yielding an input token to v. with iteration number n. 0

Corollary 17: Suppose v. is k-dependent on vi. Let ej be the final arc on the k- 0

dependency path and ei be an input arc for vi. Suppose token ti resides on ei and tj on ej.
The iteration number for t. can not be k larger than that for ti.

Our goal is to show that for certain loops all pairs of nodes are k-dependent, for sufficiently large

This motivates the next lemma.

Lemma 18: Let L be a loop code-block without conditionals. There exists at least one
loop variable i such that all D operators in . are directly dependent on merge M i.Such

an i is called a leading variable.

Proof: Let i be a loop variable such that there exists a directed path from Mi

to the loop predicate, which does not pass through any switch. There must be
such an i, since the loop predicate fires once per iteration. Since the loop
predicate provides input to every switch, each switch is directly dependent on 5
Mi. Every D is directly dependent on some switch, so the result follows.0

Corollary 19: If i is a leading variable, every node is 1-dependent upon M i.

Corollary 20: If i is a leading variable. M1 is 1-dependent upon itself.

Shortest dependency path3 play an important role in establishing a bound on the size of the

nterval of active iteration numbers.

Definition 21: Let k be the smallest integer such that node vj is k-dependent on v.
Then we say v. is of distance k from vi.

Note that if v is of distance k from vj all paths from vi yo v. contain at least k D operators, S

ounting vi, but not v.

Theorem 22: A loop code-block L without conditionals is a bounded loop if and only
if the cyclic portion of . forms a single, strongly connected component. 0

S ii

- -, - .- •. . z.. _- - -. , - , . . -- . . C - . .

Analysis and Control of Loops 87

Proof: (=) Suppose the cyclic portion of t forms a single, strongly
connected component. Let (st) and (u,v) be an arbitrary pair of arcs. Let i be
a leading variable, as per Lemma 18. Since L is strongly connected, M i is

dependent on t. Let 1 be the distance of M. from t. By Corollary 19, u is of
distance at most 1 from M i. Node v is of distance at most 1 from u. Since M i

is 1-dependent on itself, v is k-dependent on t, using edge (u,v), for all k > I
+ 2.

Let m be the number of loop variables. Then I < m. Thus, if token ti exists

for arc (s.t) and token tJ. exists for arc (u,v), the iteration number of tJ. can be at

most m + 1 larger than that for t. Since the two edges are arbitrary, no two

tokens may coexist at any time with iteration numbers differing by more than
m+1.

(=) Suppose, on the other hand, the cyclic portion of £ does not form a
single, strongly connected component. Let i be a leading loop variable, i.e.,
there exists a path from M, to v, for any node v. Since, the . does not form a

single, strongly connected component, there exists a node v such that M i does

not depend on v. Thus, i may perform an arbitrary number of iterations
before without v firing. Since there is a path from M. to v, an arbitrary

number of tokens can accrue along this path. 0 S

is result provides a precise, easily computable, characterization of the class of bounded

irce loops. Determining whether a graph is strongly connected can be performed in O(e)

auons, cf [11, page 189. Such loops have predictable storage requirements, generate a bounded S

ber of subordinate invocations, and allow iterations identifiers to be safely assigned as i+ 1

m + 1, where m is the number of loop variables.

Corollary 23: If a loop with m loop variables is resource bounded, it can unfold into at

most m + 1 concurrent iterations.

th additional effort we can compute tighter bounds on the number of concurrem itcrations.

value of I in the proof of Theorem 22 can be computed uling an all-pairs shortest path

ithm. Assign a weight of 0 to all edges, except the output arcs of D operators- these should be

ned a weight of 1. Compute the all-pairs shortest (i.e., least weighted) path [1]. For each node

I be the weight of the shortest path from v to a leading merge. Take /to be the maximum of

IV A variety of algorithms -xist for all-pairs shortest path: they typically require C (n3)

itions. where n is the number of nodes.

r AD-A154 773 RESOURCE MANAGEMENT FOR THE TAGGED TOKEN DATAFLOWd 22
ARCHITECTURE(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
LAB FOR COMPUTER SCIENCE D E CULLER JAN 85

UNCLASSIFIED MIT/LCS/TR-332 NOSOi4-?5-C-066i F,'G 9/2 N

EEME~EhEE

1111.0 E~ 25
_________ * 32

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS.1963-A

7 ~ .°

88 Analysis and Control of Loops § 7.3 S

We can derive nearly as tight a bound with less computational effort by abstracting the internal

structure of the loop body. Every node is on a path between two merges, containing a single D

operator 8 . Consider an arbitrary node v. There exists a merge node M of distance at most 1 from

v. Thus, the distance from v to a leading merge is at most 1 greater than the distance from M to a "- -'-.

leading merge. We can take I to be the maximum distance from a merge to a leading merge plus 1.

This observation is captured in the following algorithm.

Algorithm 24: Maximum Loop Unfolding o
Input. Loop Code-Block Graph (cyclic portion), L

Output. Upper bound on the number of concurrent iterations.

Method

1. Construct the merge 1-dependence graph Al from L. A1 contains a node for
each merge node in L Edge (ij) E T if there is a path from M to M. containing a
single D operator.

2. If A 1 does not form a single connect component, stop; the loop is unbounded.

3. Construct the edge-weighted merge dependency graph A* from A 1 . A
contains a node for each merge. Edge (ij) E A with a weight of k if the shortest
path from i toj in A 1 has length k.'

4. Return the maximum weight from a merge node to a leading merge, plus 1.

To demonstrate that Step 2 is correct, we must verify that A 1 forms a connected component if

and only if the cyclic portion of L forms a connected component. If the cyclic portion of L forms a

connected component, then A 1 certainly does. Conversely, consider any pair of nodes u and v.

There is a path from u to a merge and a path from a merge to v, since L is well-connected. Since all

merges are connected, u and v are connected. Let m be the number of loop variables and e the

number of edges. Step 1 requires 0(me) operations. Step 2 is 0(m). Step 3 is 0(m3). Generally, m

-* is much smaller than the number of nodes or edges.

18This is analogous to the assumption for acyclic graphs that all nodes are on a path from the source to the sink.

Dataflow operators have no side-effects, so a node with no output arcs would be useless. Switches for a conditional are an
exception, since certain input variables may not be required for one or the other setting. Additional arcs can be
introduced to preserve the path property. in practice, impure operators are introduced which have limited side-effects;
output arcs must be added to preserve the path property.

O

§ 7.3 Analysis and Control of Loops 89

7.4. Controlling Loop Unfolding

Automatic unfolding of loops is an essential source of parallelism in the U-interpreter model.

Unfortunately, loops which offer vast amounts of parallelism present the possibility of run-away

parallelism, requiring vast amounts of machine resources. It is essential that these loops be able to

unfold, but in a controlled fashion. The structural characterization of resource bounded loops

suggests how unbounded loops can be controlled: add auxiliary arcs so that the cyclic portion of a

loop code-block forms a single, strongly connected component. Unfortunately, the loops generated

by this transformation offer little parallelism. The potential parallelism can be increased with the

addition of dummy loop variables, but this results in substantial overhead. To provide efficient,

controlled unfolding of loops, it is necessary to step somewhat outside the basic model. This section

presents a series of loops transformations, aimed at efficient, controlled unfolding. The first

transformation generates bounded loops from unbounded loops, with the addition of a minimum _0

number of arcs. The second provides enhanced unfolding with the addition of loop variables. The

third provides similar benefit, but with the addition of special control operators.

Transforming unbounded loops into bounded loops

Let Z be an unbounded loop. By introducing auxiliary arcs, the graph for L can be transformed

into a strongly connected graph L'. The auxiliary arcs represent artificial dependencies; the data

which travels along these arcs is discarded by the destination operation. Care must be exercised

that the transformed graph is legal; the loop body must remain acyclic. L' will compute the same

function as L, but will exhibit more controlled behavior.

How can a minimum number of arcs be introduced to transform L into a strongly connected _

graph? Suppose the strongly connected components are collapsed into individual nodes. The

resulting graph is acyclic. By Lemma 18, there is exactly one node which has no predecessors; this

represents the component containing the leading variables. Call it the leading node. There are a

,ollection of trailing nodes, which have no successors. Every node is on a path from the leading

node to a trailing node. Suppose there are n trailing nodes. To make the graph strongly connected

n arcs must be introduced, such that each trailing node is connected to the leading node. An edge

can be introduced between each trailing node and the leading node, or the trailing nodes may be

chained together, with the final one connected to the leading node. We adopt this latter strategy in

the loop transformation algorithm below.

A°. .' . . . *
.

.-.s. -

90 Analysis and Control of Loops § 7.4

Algorithm 25: Bounded Loop Transformation

Input: Loop Code-Block L

Output: Bounded Loop Code-block V, equivalent to L.

Method -

1. Construct the merge 1-dependence graph A 1.

2. Reduce 1 to T, by coalescing strongly connected components.

3. Let L be a leading node, and T1 ..., Tn be the trailing nodes in T. For each Ti, let o
t be a loop variable represented by node Ti in T Let S. and D. be the switch and

D operators for ti.Let I be a loop variable represented by L, with D operator D1.
To generate L' from L:

a. Add an auxiliary arc from S to Di+ 1, for i 1 to n-1. .

b. Add a control arc from Sn to D,.

The distinction between auxiliary and control arcs is somewhat artificial; they both introduce a

dependency between otherwise independent computations. We want to call special attention to the

dependency from the trailing variable to the leading variable because it is the keystone in

controlling the number of concurrent iterations.

As an example of the transformation, consider the loop body in Figure 7-4. It has three loop

variables: I, SUM, and PROD. The merge dependency graph is shown in Figure 7-5. Under

Algorithm 25, an auxiliary arc is added from the switch for SUM to the D for PROD. A control arc

is added from the switch for PROD to the D for I. This results in the loop shown in Figure 7-6.

Note, that the transformation introduces a cycle of dependencies including all the merge operators.

The new merge 1-dpendence is shown in Figure 7-7.

Let us examine how this modified code-block unfolds, assuming F and 0 represent lengthy

computations. Initially, all the switches are enabled. They fire and enable the first instances of F .-. .. ,

and G. DSUM and DpROD will not be enabled for some time, but D1 in enabled immediately. It

fires, allowing variable I to begin its second iteration and enables a second instance of F and G. The

loop does not continue to unfold, however, as the unmodified loop would. The first instance of G

must complete and allow PROD to begin its second iteration, before I can begin its third. At most

three instances of F and two instances of G can be in execution simultaneously.

:.: -.......

§ 7.4 Analysis and Control of Loops 91 -

0

4- <N"- °

___SUM_____.___-S

Figure 7-4: Unbounded Loop

Increased parallelism in bounded loops

The example above demonstrates essentially maximal unfolding for a bounded loop; the degree *.

of unfolding is equal to the number of loop variables. To allow such a loop to unfold further, it is

necessary to introduce auxiliary loop variables and thus weaken the coupling between the trailing

* variable (PROD) and the leading variable (1).

* In the example above, auxiliary loop variables can be introduced as shown in Figure 7-8. Each

new loop variable increases the maximum number of concurrent instances of each F and G by one.

* Adding a loop variable involves adding three new operators (merge, switch, and D) and an arc from

. . 0 .

92 Analysis and Control of Loops § 7.4 -

sum ePROD

Figure 7-5: Merge-1 Dependency Graph

the switch of the trailing variable t. to the new D. The control arc ties the new switch to the leading

D.

This approach is effective, but has a number of shortcomings. It introduces a fair amount of

overhead. The lag time from the completion of an iteration of the trailing variable to the initiation

of a new iteration of the leading variable increases with the number of auxiliary variables. Finally,

the degree of unfolding is fixed in advance; the approach can not used to apply dynamic control

over the amount of parallel activity. A more flexible strategy which allows the degree of unfolding

to be easily adjusted with little overhead is desired. However, by Corollary 23, this can not be

accomplished within the basic model.

Control operators

The essential contribution of the dummy loop variables is to provide a source of trigger tokens

along the path from the trailing variable to the leading variable. This can be accomplished by

initializing the graph with k tokens (with iteration numbers 1 through k) along the original control

arc. A special ek operator (which increments the iteration number by k) must be introduced so that

the ith iteration of the trailing variable triggers the i + kth iteration of the leading variable. This

approach solves the problems raised above, but compromises the basic model somewhat, since

graphs are not self-cleaning and self-initializing.

It is important to draw a distinction at this point between the abstract model (the U-interpreter)

.?.9 .- :

...........- :

§ 7.4 Analysis and Control of Loops 93

PROD :""-

sumI

-

Figure 7-6: Transformed (Bounded) Loop 21

and a practical realization. There is no reason to constrain loops in the abstract model, since ..9 ..

resources are unbounded. The only reason to constrain loops is to force programs to execute within

the resource constraints of a concrete machine. The machine, unlike the abstract model, associates
a certain amount of state information with each ode-block activation. This can be used to

implement the control operators required here..: -..

A control operator is needed which acts like a governor. It should allow the leading variable to :i--~i-

circulate until it becomes k iterations ahead of the trailing variable, at which point the leading "'..
variable must be inhibited until the trailing variable completes another iteration. Call this a G-,.,-.-.

operator. It can be implemented with a bit-list and enough storage for a single token. The G "''---

94 Analysis and Control of Loops § 7.4 -

I -::::~:

I I -0 ''=

I .

sum PROD ..

Figure 7-7: Transformed Merge-1 Dependency Graph

operator has two inputs, one for the leading variable and one for the trailing variable. It fires

whenever a token arrives on either input. The bit-list is used to keep track of the trigger tokens that .

arrive from the trailing variable. Initially, all the bits are on. When it fires for the leading variable,

the bit-list is examined. If the next iteration identifier is free, the leading variable passes through

and the bit is cleared. Otherwise, the leading variable is stored internally until the next iteration

identifier is free. The arrrival of a trigger token resets the corresponding bit. Certainly other

implementations are possible, but the point is that providing a certain amount of storage for each

code-block invocation is much simpler than purging trigger tokens from the waiting-matching

stores. The approach suggested here yields the graph in Figure 7-9 for the example presented

above.

7.5. Storage Requirements of Parameterized Loops

The transformation above generates loops with parameterized unfolding. The maximum number

of concurrent iterations is a parameter k, which can be set when a loop code-block is invoked. The

token storage requirements of such a loop depend on the value of k. For any particular k the

storage requirement can be determined by solving Linear Program 12. However, we should like a

more efficient way of computing the storage requirement as a function of k. This can be 7

accomplished with a slight extension of the linear programming technique developed above, called

. ..

§ 7.5 Analysis and Control of Loops 95

swth switch switch switch (N
.I

Figure 7-8: Auxiliary Loop Variables

parametric programming [13]. The linear program is first solved for k =1, the solution is extended

incrementally for larger values of k.

Intuitively, for sufficiently large k, the storage requirement should increase linearly with k.

Recall the loop structure that gives rise to unbounded storage requirements. Certain loop variables

circulate freely while others, which depend on the circulating variables, fail to circulate. Each

iteration of the circulating variables deposits a token on the arcs which represent the dependence to

the non-circulating variables. We expect the worst case token-storage requirements to be of the

- -

96 Analysis and Control of Loops § 7.5

4-~ T".7/.-- <

F G

+1 +

GDD

Figure 7-9: G-Transformed (Bounded) Loop

form ak + b where k is the number of iterations, for sufficiently large k. The constant coefficient b

accounts for a constant number of tokens in the components of the circulating variables. The linear

coefficient a is the number of arcs upon which tokens accumulate. For small values of k the storage

requirement behaves more erratically, because k can influence which components circulate and

which lag behind. This intuitive viewpoint is useful, but we should like a more concrete result. The

basic algorithm is given below; the interested reader is referred to [13], Chapter 3.

We are given a linear program for a parameterized loop code-block. The parameter k appears on

the right-hand side of the constraint corresponding to the control arc, say row m.

S . % '

§ 7.5 Analysis and Control of Loops 97 "

1. Transform the linear program into canonical form by adding slack variables and e
converting inequality constraints to equality constraints. (The constraint matrix is still
totally unimodular.)

2. Solve the linear program for k = 1. The final tableau appears as in Figure 7-10.
Increasing k by Ak increases the token storage requirement by -Cn+mAk, for Ak small
enough that the current basis remains optimal.

3. Determine the range of Ak for which the current basis remains optimal. This is given

by:

MAX { -r/bim ba > 0 } Ak < MIN{ -r/bn I bm < 0 },for i 1 to m.

4. Increase k to the point where a pivot must be performed. The binding constraint, say
row r, determines which variable will leave the basis. Apply the usual ratio test to
determine which variable will enter the basis. Perform the pivot.

5. Repeat steps 3 and 4 until the maximum permissible value of k is reached or until no
upper limit is placed in step 3.

C1X1 + CZX 2 + *"" + C nXn + Cn+lxn+l + + So + Cn+mXn+m z

a,,x! + a1 2 x2 + go% + a lnX n + b 1 1 Xn+l + bl2xn+ 2 + *., + blmXn+m =r
aj1xj + a *x, + + a2 nx n + b21Xn+l + b22xn+2 + .+ b2mXn+ m r

aMxI + %2 z + + amnxn + bmlxn+1 + bm2xn+2 + + bmmXn+m rM .

Figure 7-10: Tableau After Solving for a Particular k

Heretofore, the focus has been on determining the resource requirements of a loop. This

parametric programming technique allows the converse question to be addressed as well. Given

that a loop must execute within a prescribed amount of resources, to what extent can it be allowed

to unfold. The parametric programming technique determines the bound. The loop

transformations enforce the bound.

. o

98 Analysis and Control of Loops § 7.6

7.6. Extensions for Fairness Assumptions

It is important at this point to evaluate the assumptions under which worst-case token storage

requirements are determined in the approach presented above. The constraint systcms presented

above define the space of all possible legal configurations, and the storage requirements have been

determined over this space. This allows for arbitrary delays from the time an activity is enabled

until the time it actually fires. This approach was adopted because communication delays are

extremely unpredictable in an asynchronous system such as the Tagged Token Dataflow

Architecture. However, in some ways it is overly pessimistic. The execution sequence carried out -

by the Tagged Token Dataflow Architecture will tend to be much more fair. Activities get enabled

and carried out in roughly a FIFO order. This restricts the space of legal configurations

significantly.

In some cases, the lag between certain loop variables is bounded by virtue of the FIFO

constraints, even though it is theoretically possible for arbitrary lags to develop. The summation

example in Chapter 2 is a case in point. Suppose the function F is simple enough that the time

required to compute it can be bounded in advance at k times the time required to increment

I. Then at most k concurrent activations of F can be in execution simultaneously. Thus, assuming

sufficient computational resources are available to support k concurrent activations ofF, the trailing

variable SUM can only lag the leading variable I by k iterations. The constraint system can be

augmented to reflect this fact by adding the constraint:

f(Msum) -f(M 1) <k.

The parametric programming technique can be employed to determine the sensitivity to k. Note

that the resulting constraint system is identical to that which results from adding a control arc with k

trigger tokens.

Employing FIFO constraints, rather than explicit constraints as suggested in Section 7.4 is rather

precarious. The computation performed by the trailing variables would have to be almost trivial

before such FIFO guarantees could be made. Communication between PEs is extremely

unpredictable, as is the time to process structure memory requests. Moreover, the amount of

parallel activity in the machine influences the relative speeds of various computations. The gains in

efficiency over the transformed loops that result from the algorithm in Section 7.4 are offset by the

hazards that may arise from inaccurate timing predictions.

• - ,t...,............"...."..-... n "-"-......"..."......."...".... .. -- -. _

7.6 Analysis and Control of Loops 99

The other kind of fairness assumption we might consider is a limit on the relative rates of loop

riables. Suppose the trailing variables can be guaranteed to circulate at 1/kth the rate of the

ading variables. This scales the accumulation of tokens on the arcs emanating from the leading

imponent by approximately (k-1)/k from the worst-case. Unfortunately, this kind of constraint

m1 not be added to the constraint system with sacrificing total unimodularity. 0

7. Extensions for Nested Loops

The techniques for analyzing loops can be extended to handle nested loops, much as the 0

chniques for acyclic code-block are extended to handle non-recursive procedures. If the inner

)ops are resource bounded, the cost of the edge corresponding to the activation of the inner loop

in be scaled by the storage requirements of the inner loop. The parametric programming

,chnique can be employed for the outer loop, as discussed above, by analyzing the sensitivity to S

ne right hand side value.

If the outer loop is a bounded resource loop and the inner loop is parameterized, the composite

tructure can be analyzed by a similar parametric technique. Rather than examine the sensitivity to

right hand side value, the sensitivity to the cost coefficient representing the storage requirement of

he inner loop is examined.

If both loops are parameterized, the problem is somewhat more complex. The two parameters (a

ight hand side value for the outer loop, and a cost coefficient for the inner loop) must be adjusted

imultaneously. This provides a method of determining how the pair of loops can unfold, given a

ound on the resources they can use collectively.

'.8. Loops with Conditionals

We turn now to the problems raised by conditional expressions appearing within the cyclic

,ortion of loops. Recall, with acyclic graphs !he introduction of conditionals made computing tight

,ounds on token storage NP-complete. The same holds for loops. The branch-and-bound

-chnique introduced in Chapter 6 will provide a reasonably tight bound for loops encountered in

,ractice. Conditionals also complicate determining the potential unfolding of loops. As a siiple

xample, consider the graph in Figure 7-11. The 'true' setting of the conditional allows for .

inbounded unfolding, whereas the 'false' setting gives a bounded loop. The dependencies between

S). -.

9.0 Conclusion 113

Future work

This research opens doors to future work in a variety of areas. A few are enumerated below.

1. Distribution of computation. The techniques developed here provide a framework that
should allow large programs to run effectively on the Tagged Token Dataflow
Architecture. These should be integrated into the compilation process and the resource
manager described in Chapter 3. Serious questions of efficiency remain. How should
invocations be assigned to domains for efficient execution. A useful model of
interaction between portions of dataflow programs needs to be developed,
supplemented with empirical investigation.

2. Data structures: The results presented here should be extended to address data
structures. Some aspects of the work carry over directly. For example, the core of many
numerical programs is a loop which repeatedly transforms a large intermediate data
structure. Each iteration creates a new structure and computes the elements based on
the structures generated by previous iterations. Since loops can unfold, numerous
versions of the intermediate structure are required. The techniques for controlling .
loops in Chapter 7 suggest how the number of intermediate structures can be limited.
Also, the results of that chapter suggest how to reuse structures, with the guarantee that
the previous version of a structure is no longer required at the point it it reused. The
notion of resource bounded programs should be re-examined while considering data
structures as well.

3. Controlling programs: We have developed a framework for controlling programs and
some rough estimates on the resource requirements of programs under a simple control
strategy. A significant amount of empirical investigation is required to flesh out these
heuristics.

4. Resource bounded programs: We have developed the concept of resource bounded
programs, but have not been extremely rigorous about it. This concept deserves to be
set forth much more precisely.

5. Alternative architectures: We have adopted the approach of analyzing and transforming
programs so that they may run effectively on the Tagged Token Dataflow Architecture.
With the understanding of the resource requirements of dataflow programs developed
here at our disposal. it would be valuable to re-evaluate the original design choices in
the Tagged Token Dataflow Architecture. This understanding has already led to two -
important modifications of the architecture and a clear rationale for determining the
relative amounts of certain resources. Is hardware managed token storage really the
right approach? Would it be advantageous to allocate a block of token storage explicitly
to each code-block invocation? To what extent should tags reflect physical resources?

. • - -.' ..

112 Conclusion § 9.0

analysis. This viewpoint is born out extensively in the thesis; powerful algebraic and graph

theoretic techniques have been employed to analyze the nature of dataflow programs. The

applications for these techniques extend beyond the work presented here.

Realization of the Model 0

In realizing the U-interpreter, there is a clear appeal to maintaining the qualities of the abstract

model as much as possible. "'his is certainly a motivating force in the design of the Tagged Token

Dataflow Architecture. However, extreme caution is required, since the model can not be realized

completely. The differences between the model and the machine must be carefully understood and

addressed. The Tagged Token Dataflow Architecture captures the firing rule precisely, and storage

for token is allocated and released automatically by the hardware. Unfortunately, the finite size of

the token store represents a serious hazard. Iteration identifiers are treated much as in the U-

interpreter, except they are finite and rather small in size. This also presents a serious hazard.

Programs are allowed to unfold automatically, as in the U-interpreter. Since the resource

requirements of a program increase as more parallelism is exposed, allowing invocations to be

performed at the earliest moment is a hazardous strategy. The main thrust of this thesis is

overcoming these problems.

The approach we have adopted is to work within the framework of the abstract model as much as

possible, because it provides a clean framework for formal analysis. Problematic programs can be

transformed into equivalent programs with more tractable requirements. Termination detection is

accomplished by embellishing graphs with auxiliary dependencies. A constraint system technique

was developed which allows the token storage requirements of individual code-block invocations to

be determined efficiently. Recognizing that a certain class of loops is particularly well-behaved led

to a program transformation which allows the unfolding of loops to be controlled and iteration

identifiers to be recycled automatically. Observations concerning the relationship of resource

requirements to the unfolding of the invocation tree led to heuristics for controlling the unfolding -

of programs in accordance with the resource capacity of the machine. Thus, by analyzing and

transforming program graphs, we can control the resource requirements of dataflow programs.

This will allow large programs to execute effectively on the Tagged Token Dataflow Architecture.

. -- .,, ,,,,,, , , . -- , d d -' h , ,a,,,,,-d lmn 'g'm hd |

§9.0 Conclusion 11-

Chapter Nine

Conclusion -"

The U-interpreter provides a powerful and elegant formal model for dataflow computation. It

offers a precise concept of legal program execution, abstracting away all details concerning the

management of computational resources. The U-interpreter is almost too successful in abstracting

the role of resources in dataflow computation; even though the model has been well represented in

the literature for some years, no clear notion of the resource requirements of dataflow programs has

emerged. This thesis offers such a notion. One must understand, however, that the resource

r,4uirements of a dataflow program depend heavily on the execution order, and hence on the

amount of parallelism that is exploited. Realizing the U-interpreter in a concrete machine involves ,

tackling certain basic resource management problems that are subterfuged in the formal model,

including: distribution of work, termination detection, token storage management, tag

management, and control over program unfolding. These issues are addressed in this thesis in the

context of the Tagged Token Dataflow Architecture. S

Understanding the Abstract Model

Although the motivation for the thesis is effective use of the Tagged Token Dataflow

Architecture, the contributions it offers toward understanding the abstract model are important as -

well. The firing rule and the graph schemata are well represented in the literature [9, 3]. However,

the focus on the invocation tree as means of understanding the dynamic behavior of dataflow

programs has not been discussed in the literature. It is an important concept for a number of

reasons: (i) it makes clear the role of activity names, (ii) it suggests how activity names can be

represented by smaller tags, (iii) it provides a framework for describing the resource requirements

of programs, and (iv) it suggests how the resource requirements of programs can be controlled. It

has been argued in the literature [121 that dataflow models are extremely amenable to formal .

671]:i

............ '.. .-

* 1 5 I Ar- ~ Yr---r-~ ~P ~ P. rV'W ~U..,i.............

110 Dynamic Control § 9.0
0

0

0

S

0

S

-S

0

S

a-

S

9

* . * - * * .

8.2 Dynamic Control 109

required very little time to compute, the resource requirement would be a multiple of n. Note, that -

with bounded resource code-blocks, the choice of scheduling strategy at the activity level has less

dramatic effects.

Finally, note that less resources are required if branching is permitted toward the bottom of the

tree, rather than toward the top. This is a bit difficult to arrange, however. The invocation tree is

not known in advance, so it is impossible to determine when the bottom is near. Also, it introduces

a time/space compromise. In order to allow for branching near the bottom of the tree, a deep

sequential thread must be allowed to develop.

8.3. A Resource Management Policy

The results of this chapter, and preceding ones, can be combined in an overall resource

management policy. As part of the compilation phase, acyclic code-blocks are analyzed to

determine their token-storage requirements. Cyclic code-blocks are transformed to introduce

control arcs and analyzed to determine their storage requirements, as a function of the control

parameter. Code-blocks are augmented with specially designated arcs to allow for breadth-first or

depth-first evaluation.

Each processing element tries to maintain k independent branches of the invocation tree. Note

that an invocation in depth-first mode extends a branch, whereas in breadth-first mode an

invocation introduces a new branch. A PE which falls below its threshold operates in a breadth-first
mode to increase its load. It may also signal other PEs, to indicate that it needs work. A PE which

exceeds its threshold operates in depth-first mode. Note that this does not alleviate the excess, it

simply inhibits further increase. The work can decrease in two ways: a sequential thread can die

out, or one can be given away to another PE.

..'

............

..... :

- - .- • ...- -7 i~~

108 Dynamic Control § 8.2

case, k independent branches are established in the top few levels of the invocation tree, and each

extends the full depth of the tree. Such a program requires k times as much computational

resources as a sequential evaluation. Thus, a program can execute k.p-fold parallelism on p

processing elements, if a sequential evaluation of the program can execute with 1/k0 the resources

in a single processor. Thus, the space complexity of a program under pure sequential evaluation 0

provides a good metric for whether a program will run effectively within the resources provided by

a parallel machine, under such a control strategy.

Note that Processing Elements in the Tagged Token Dataflow Architecture do not pursue a pure o

sequential evaluation, in the sense meant here. They tend to pursue a breadth-first evaluation, as

explained above. The fewer the number of processing elements, the more restricted the breadth of

the active invocation tree should be.

The relationship between resource requirements and program unfolding outlined above has

important consequences. Consider the implications for the viability of large systems of small

processors. Such systems can execute only a small class of programs effectively, namely programs

whose invocation tree is extremely broad and shallow. Adding processors to such a system allows

for a broader active invocation tree, but not a deeper one. To support a deeper tree, either the

processors must be larger, or less parallelism exploited. If parallelism is restricted too much,

processors will idle; their resources being used simply to record the state of the computation.

In summary, the amount of exposed parallelism should be constrained to be some multiple of the

number of processors. Since the resources required to execute a program can grow linearly with the

amount of parallelism exposed. such a policy maintains a close match between the supply and

demand for resources. A simple rule of thumb applies: if a program can execute successfully in a

sequential evaluation on a single processor, it should execute successfully with a limited parallel

evaluation on any number of processors, each providing resources equivalent to the singleton

processor.

Note that at the code-block invocation level, depth-first evaluation requires the least amount of

resources. At the activity level, this is not the case. Consider a loop code-block such as the

summation example from Chapter 2. With a depth-first evaluation, the leading variable (I) would ._.

perform all n iteration before any other operators had a chance to fire. Even if the function F

...-......-............-...................-...........................-.......... ..-...-...-..-.........--.... ::::..:..... :::::::::::::::

., "

§8.1 Dynamic Control 107 -"

Thus, for every code-block we have two graphs, a breadth-first graph and a depth-first graph. It

is not difficult to engineer the program representation so that these are represented by a single .-. -

code-block; the auxiliary arcs must be specially designated. Tokens for a particular invocation carry

a flag which indicates the form of evaluation. When a code-block is invoked, the resource manager

can designate the form of evaluation to pursue. A breadth-first strategy can be followed until ample 0

parallelism is generated. At that point, a more conservative depth-first strategy can be adopted,

until the exposed parallelism falls below a certain threshold.

Delayed invocation requests 0

Delaying invocation requests within the resource manager boils down to constructing an

appropriate set of requests queues. The primary issue is how to record the structure of the

executing program so that given an invocation request, the part of the active invocation tree that it ..

stems from can be determined. A simple approach is to assign a threshhold of subordinate

invocations to each invocation and delay invocations when the threshold is exceeded. A queue of

pending subordinate invocations is maintained as part of the state information associated with each -

invocation. When an invocation is requested, the number of current subordinates is examined. If -

the threshold is exceeded, the request is queued; otherwise, the invocation is performed. When

subordinate invocations terminate, pending invocations are processed.

8.2. A Control Strategy

Given a mechanism for controlling the unfolding of program, we must develop a strategy for

applying control and determine the class of program which will execute successfully on the machine

under such a strategy. One obvious strategy is to limit the unfolding to a fixed number of 0

sequential threads. The limit being determined by the amount of parallelism the machine is

capable of exploiting. In the Tagged Token Dataflow Architecture, each PE is capable of exploiting

approximately eight-fold parallelism. So in a configuration with p processing elements, it would be

reasonable to limit the unfolding the 8pto 16p sequential threads.

We can categorize the class of program which are sure to execute successfully on the machine

with such a strategy. Suppose k branches of the invocation tree are allowed to execute in parallel.

What are the resource requirements of a program executing under such a strategy? In the worst-

,* o '. *

, . . :.,-: /..,, * o.. .. . - . .? . .-. , - ... •"- -.. . .-

106 Dynamic Control § 8.1

Depth-first Graphs

Given an acyclic graph, either an acyclic code-block or the body of a loop, it can be transformed

into a purely depth-first graph (Le., one that will have no more than one active child at any time)

with the addition of auxiliary dependencies. The resulting graph must be acyclic as well. The

transformation is given below.

Algorithm 26: Attenuation of Active Invocation Tree.

Input. Acyclic program graph L, without conditionals.

Output. Equivalent Depth-first Graph.

Method

1. Compute the transitive closure of the graph. Discard all but the apply nodes.
This gives the dependencies between subordinate invocations.

2. Compute a topological ordering of this invocation dependency graph. If there is
no dependency from an invocation ai to its successor ai+ 1, introduce an auxiliary

arc from the Apply" for ai to the Apply for ai+ 1.

Conditionals require additional care. First, there may be conditional dependencies between apply

nodes. Second, auxiliary arcs can not be attached to nodes within a conditional without observing

the switch and merge structure outlined in Chapter 2. We must guarantee that under any setting of

the conditionals, there is a path in the graph which contains every apply operator that fires. The key .

is to tie together the apply operators within each side of a conditional, and then to interface these

apply chains to the chain of apply operators in the enclosing graph. Let C be an inner-most

conditional nested within graph g. Note g may be an acyclic block, a loop body, or a conditional

expression. Apply Algorithm 26 to the two sub-blocks of C to tie the apply nodes into linear chains.

Choose a switch node and connect its 'true' and 'false' ouputs to the first apply in the respective

chains. Generate a new merge node and connect the last apply nodes in the two chains to it. Thus,

for either setting of the conditional, the apply nodes in the conditional are on a path from the

chosen switch to the new merge. Partition g into g, and 9b such that (i) any node which is

dependent (even conditionally) on a merge of C is in gt, and (ii) any node upon which a switch of C

depends appears in 9b. Apply Algorithm to gt and 9b independently. Connect the last apply in t

to the chosen switch in C. Connect the auxiliary merge in C to the first apply in 9b.

. .-

8.1 Dynamic Control 105

branch. Thus, a maximally parallel evaluation can require exponentially more resources than a

sequential evaluation.

Tagged Token Dataflow Architecture leans toward a maximally parallel evaluation, like the U"

interpreter, even though it can exploit only a certain amount of parallelism. Activities are enabled

in essentially FIFO order. If invocations are initiated as soon as they are enabled, independent 0

subordinate invocations will execute in parallel, regardless of status of the machine or the amount of

exposed parallelism. Consider a simple program which employs binary recursion. At the top level,

both subordinates are activated; one perhaps slightly ahead of the other. They may be placed on

separate processing elements or their execution may be interlaced in the pipeline of a single

processing element; in either case, they make comparable progress and their four subordinates are

activated nearly in parallel. The unfolding proceeds in a breadth-first manner. When the amount

of exposed parallelism exceeds the amount of parallelism that can be exploited, the various

invocations timeshare the processing elements at the instruction level. The progress of each of the

active code-blocks is comparably degraded, and they continue to make comparable progress. The

invocation tree continues to unfold in a breadth-first manner, even though the processing power of

the machine is fully utilized and additional parallelism can not be exploited. If the active portion

exceeds the machine resources, the program deadlocks. A less eager strategy might allow the

program to execute to completion and still fully utilize the processing power of the machine.

To effectively utilize the machine and allow large programs to run on it, the active invocation tree

should be just broad enough to provide enough parallelism to saturate the machine. A breadth-first

evaluation can be pursued until enough parallelism is generated to saturate the machine. At that

point, the various independent subtrees can be constrained to a depth-first evaluation.

How should such a control strategy be implemented? We have two choices: (i) transform graphs

by adding auxiliary arcs to limit the number of requests for parallel invocations, or (ii) allow the

resource management system to delay initiating invocations. Both approaches effectively limit the

branching of the active invocation subtree.

-2. .

104 Dynamic Control §8.0

invocation tree can be partially controlled. An effective resource management system should

dynamically control program unfolding so that the size of the active invocation tree does not exceed

the available resources. Clearly, this is not possible for all programs, since some programs simply

require more resources than the machine provides. The goal is to allow a large class of programs to

execute efficiently on the Tagged Token Dataflow Architecture. This requires constraining a

program when it begins to generate parallel activity far in excess of the amount of parallelism that

can be exploited by the underlying machine.

8.1. Breadth-first and Depth-first Evaluation

To understand how program unfolding can be controlled, let us examine two extreme scenarios.

Consider first the maximally parallel scenario offered by the U-interpreter. All processor resources

are assumed to be unbounded; an activity executes as soon as it is enabled; and the invocation tree

unfolds in a breadth-first manner. As soon as an activity completes, all of the activities that it

enables execute. At the code-block invocation level, as many branches as possible are pursued in

parallel. Independent, subordinate invocations are initiated in parallel. Each subordinatei- "
invocation is the root of a subgraph of independent computation, so new subgraphs are initiated at

the soonest possible moment. Each of these enable as many subordinate invocations as possible, ..

and so on. The active portion of the execution graph tends to become broad and bushy. Assuming

unbounded resources, the program executes in the minimum possible time. .

At the other extreme, consider the scenario for a conventional (sequential) machine. Only a

single code-block invocation can be active at any time. When a subordinate invocation is initiated,

the caller is suspended until the subordinate completes. The invocation tree unfolds in a depth-first

manner. A single branch of the invocation tree unfolds until it terminates. It then retracts to the

last unevaluated alternative branch, and so on. It is possible for a dataflow machine to pursue a

depth-first unfolding as well. Each code-block invocation is permitted to have at most one active

subordinate invocation at any time. The active invocation subtree is restricted to a single branch,

however, unlike a conventional machine, there may be activity all along the branch. A oode-block

invocation need not suspend when it invokes a subordinate.

In the maximally parallel scenario, the active portion of the invocation tree may include the entire

invocation tree. In the sequential scenario, the active portion never includes more than a single

S" "-" . . * ' . '.. . . 2": ' . ." . . . • . - ".. . .

-:~~~~~~~~~~~~~~. . --....'-... ."..".............' '-, .-... ., :" . --. : ." ":'' .'''
.. .. . h , 1 , dlL'lllun indnni~dl-~['llll lnlmm |~ ..il.t

§8.0 Dynamic Control 103

S

Chapter Eight

Dynamic Control

The preceding chapters provide a complete solution to the first three resource management

problems: termination detection, token storage overflow, and iteration overflow. However,

program deadlock has been only partially addressed. Let us review the steps taken so far. Chapters

2 through 4 established the nature of the problem. A program unfolds as a tree of code-block

invocations. Each invocation requires certain resources. Program deadlock arises when the active

invocation tree exceeds the resource capacity of the machine. Chapter 5 provided a means of

predicting the overall resource requirements for a restricted class of programs. Chapter 6

demonstrated that overall resource requirements can not be predicted for programs in general.

Thus, it is not possible to determine a priori whether a given program will deadlock. In light of this,

*i we have aimed at reducing the potential for program deadlock, rather than trying to avoid it all

together. The key observation is that the resource requirements of a program are reduced if the

breadth of the active portion of the invocation tree is restricted. Thus, controlling the number of .

" concurrent iterations of loops is a vital step in reducing the potential for program deadlock. If a

- loop can potentially unfold into a large number of concurrent iterations under reasonably fair

scheduling, each iteration must involve a substantial amount of computation. Rapidly spawning S

many such blocks of computation makes program deadlock very likely. It would be wiser to

* generate only as much parallel computation as required to saturate the machine. In this chapter, we

consider even more aggressive measures to reduce the potential for program deadlock and examine

ways to dynamically control the amount of parallel activity.

The central concept in this chapter is the invocation tree. At any time, the active portion of the

invocation tree represents the load on the machine resources. The depth of the active portion is

dictated by the computation being performed. However, the breadth of the active portion is

determined by the way a program is allowed to unfold. Thus, the overall size of the active

-9.+

."-.....................-...-...........- - -.. .--.-..-.- +....-:--i'i

102 Analysis and Control of Loops § 7.9

The essence of this transformation is the observation that loops have bounded unfolding if the

cyclic portion forms a strongly connected component. Auxiliary arcs can be added so that this

condition is met. The resulting loop is amenable to analysis using the constraint system technique

developed in Chapter 5. Furthermore, the loops can be controlled dynamically.

We now have included the entire collection of graph schemata allowed by the U-interpreter. We

can once again evaluate our situation with respect to the resource management problems.

1. Termination Detection: Solved. For any code-block, cyclic or acyclic, by adding arcs we
can guarantee that the firing of the end node signifies termination. -.

2. Token Storage Overflow: Solved, with the caveats mentioned in the previous chapter
concerning conditionals. By transforming loops in the manner described above we
guarantee that every code-block invocation has bounded token storage requirements. A
reasonably tight bounded on the worst-case token storage requirement of a given code-
block can be determined by solving a linear program.

3. Iteration Overflow: Solved. Transformed loops require a bounded number of iteration
identifiers and recycle iteration identifiers automatically. The D operator simply
increments i, modulo some parameter k.

4. Program Deadlock: Partially solved. In restricted cases, the resource requirements of
entire subtrees of the invocation tree can be predicted. In general, the requirements of
the entire program can not be predicted. However, by restricting the breadth of the
active invocation tree, the potential for program deadlock can be reduced. Restricting _

the unfolding of loops is an essential contribution in this light. Loops which exhibit .--

potentially unbounded unfolding tend to cause the active invocation tree to grow very
broad, very rapidly. -"-

.

S7.8 Analysis and Control of Loops 101

The first step is conditional extraction. Let C be a conditional expression with n switches, m.

merges, and no internally nested conditionals. There is an unconditional dependency between

switch si and merge mj if there is a path from si to mj on both sides of the conditional. For the

purpose of generating the merge 1-dependence graph, the conditional expression can be replaced by

n+m well-behaved operators, interconnected according to the unconditional dependencies.

Conditional expressions are extracted, starting from the inner-most conditionals and working

* outward, until no conditionals remain. Apply Algorithm 25 to generate auxiliary and control arcs.

The resulting loop is strongly connected, even if the conditional dependencies are ignored.

Ignoring conditional dependencies introduces a potential problem in controlling the unfolding of

loops. Suppose there is a conditional dependency from the trailing variable to the leading variable,

as chosen in Algorithm 25. As long as this dependence is in force, the control arc will be redundant.

*: Increasing the lag on the control arc will not increase the potential unfolding. For this reason, it is -

" important to keep track of potential dependencies. Auxiliary arcs should be aligned with

conditional dependencies wherever possible. The control arc should not be aligned with a

conditional dependency, if possible.

The other key point in Theorem 22 is the role of the leading merge, a merge node upon which all

nodes are 1-dependent. Without conditionals, any merge which provides input to the predicate

expression suffices as a leading merge. There is a potential problem if the predicate expression

contains conditionals; perhaps one variable triggers the predicate for certain iterations and a

* . different loop variable for otherv. However, this problem is resolved by requiring that conditionals

be well-connected. The predicate expression yields a single result, a boolean. Thus, there is a path

from any input to the node which generates the control tokens for the bank of switches. Whether or

* not the loop contains conditionals, any merge providing input to the predicate expression suffices as

a leading merge.

7.9. Summary

Algorithm 25 meets the task set forth at the beginning of the chapter: given a U-interpreter loop,

transform it into an equivalent loop that has (1) bounded, predictable token storage requirements,

(2) recycles a fixed collection of iteration identifiers automatically, (3) allows only a bounded _ 0

number of iterations to be active concurrently. Such a loop is particularly well suited for execution

on the Tagged Token Dataflow Architecture.

- .-.------. ..--
.- ,... .. -..... :. ...-..:........ . " -. .

100 Analysis and Control of Loops § 7.8

loop variables can be affected by the setting of the conditional. We must assure that loops have

* bounded unfolding under any setting of the internal conditionals, in order to avoid token storage
"- overflow and run-away parallelism. Moreover, we must guarantee that only a fixed sized interval of

iteration numbers are required at any time. These problems are addressed in turn.

switch switchF (
T FT F N

T T

++

D D

Figure 7-11: Loop with Conditional Dependencies

To assure bounded unfolding we need only guarantee that the merge nodes are mutually

dependent (Le, the merge 1-dependency graph forms a connected component) regardless of the q

settings of the conditionals. To this end, we adopt a conservative attitude toward the dependencies

implied by a conditional expression; dependencies which are affected by the settings of the

conditionals are ignored. This may cause redundant arcs to be introduced when the trailing nodes 4

are tied together, but no serious problems.

..................... ,x.........

-114 References

1 6

References 115

S

References

1. Aho, Hopcroft, and Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

2. Arvind. Decomposing a Program for Multiple Processor System. Proceedings of the 1980
International Conference on Parallel Processing, August, 1980, pp. 7-14. S

3. Arvind, and Gostelow, K. P. "The U-interpreter". COMPUTER 15, 2 (Feburary 1982), 42-49.

4. Arvind and Brock, J.D. Streams and Managers. 217, Computation Structures Group,
Laboratory for Computer Science, MIT, Cambridge, Mass., June, 1982. To appear in Proceedings
of the 14th IBM Computer Science Symposium..

5. Arvind, and D. E. Culler. Why Dataflow Architectures. Proceedings of The 4th Jerusalem
Conference on Information Technology, May, 1984, pp. 27-32. Also appeared as MIT CSG Memo
229-1.

6. Arvind, D. E. Culler, R. A. lannucci, V. Kathail, K. Pingali. The Tagged Token Dataflow
Architecture. To be published as an MIT Technical Report.
7. Arvind, and K. P. Gostelow. A Computer Capable of Exchanging Processors for Time.

Information Processing 77: Proceedings of IFIP Congress 77, IFIP, August, 1977, pp. 849-853.

8. Arvind, and Gostelow, K. P. Some Relationships Between Asynchronous Interpreters of a
Dataflow Language. In E. J. Neuhold, Ed., Formal Description of Programming Languages, North-

JHolland, New York, 1977.

* 9. Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and
Computing Machine. 114a, Department of Information and Computer Science, University of
Californiav, Irvine, California, December, 1978.

* •10. Arvind, and R. A. lannucci. A Critique of Multiprocessing von Neumann Style. Proc. of the

10d International Symposium on Computer Architecture, June, 1983,

. 11. Arvind, and R. E. Thomas. I-Structures: An Efficient Data Type for Functional Languages.
TM-178, Laboratory for Computer Science, MIT, Cambridge, Mass., September, 1980.

12. Backus, J. "Can Programming Be Liberated from the von Neumann Style? A Functional Style
and Its Algebra of Programs". Communications of the ACM 21, 8 (August 1978), 613-641. _

]i. .-:S

116 References

13. Bradley, Hax, and Magnanti. Applied Mathematical Programming. Addison Wellsley

Publishing Co., 1977.

14. Coffnan, E. and Denning, P.. Operating System Principles. Prentice Hall, Inc., 1973.

15. Dennis, J. B. Lecture Notes in Computer Science Volume 19: First Version of a Data Flow
Procedure Language. In Programming Symposium: Proceedings, Colloque sur la Programmation,
B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

16. Garey, M., Johnson, D, and Stockmeyer, L. "Some Simplified NP-Complete Graph
Problems". Theoretical Computer Science 1 (1976), 237-267.

17. Heller, S. and Arvind. Design of a Memory Controller for the MIT Tagged Token Dataflow
Machine. CSG Memo 230, MIT Laboratory for Computer Science, October, 1983. Presented at .

IEEE/ICCD '83.

18. Leiserson, C. and Saxe, J. "Optimizing Synchoronous Systems". Journal of VLSI and
Computer Systems 1, 1 (1983), pp. 41-67.

19. Leiserson, C., Rose, F., and Saxe, J. Optimizing Synchoronous Circuitry by Retiming. Third
Caltech Conference on VLSI, Rockville, Maryland, 1983, pp. 87-116.

20. Papadimitriou, C. and Steiglitz, K.. Combinatorial Optimization. Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1982. 0

21. Weng, K.-S. An Abstract Implementation for a Generalized Dataflow Language. TR-228, . . -

LCS, May, 1979.

S.

.

.

- . . -N --U.. V•....

OFFICIAL DISTRIBUTION LIST

1985

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station S
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washinoton, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Ccpy
NAVDAC-OOH .O
Department of the Navy

" - Washington, DC 20374

.. 0 "

FILMED

7-85

DTIC

